The PDP-11/70 system.

The tradition continues with the J-11, DIGITAL’s newest high-perform-
ance microprocessor. It offers the architecture, power, and functions
of the PDP-11/70 (the PDP-11 family performance leader) in a single 60-
pin package. The J-11 will form the basis of a new line of DIGITAL

products. These powerful systems will carry the PDP-11 architecture
years into the future.

PDPT

Architecture Handbook

dlilaliltall

Copyright© 1983 Digital Equipment Corporation.
All Rights Reserved.

Digital Equipment Corporation makes no representation that the in-
terconnection of its products in the manner described herein will
not infringe on existing or future patent rights, nor do the descrip-
tions contained herein imply the granting of license to make, use,
or sell equipment constructed in accordance with this description.
The information in this document is subject to change without notice
and should not be construgd as a commitment by Digital Equipment
Corporation. Digital Equipment Corporation assumes no responsi-
bility for any errors that may appear in this manual.

DEC, DECnet, DECsystem-10, DECSYSTEM-20, DECtape
DECUS, DECwriter, DIBOL, Digital logo, IAS, MASSBUS, OMNIBUS
PDP, PDT, RSTS, RSX, SBI, UNIBUS, VAX, VMS, VT
are trademarks of
Digital EQuipment Corporation

This handbook was designed, produced, and typeset
by DIGITAL's New Products Marketing Group
using an in-house text-processing system.

TABLE OF CONTENTS

CHAPTER 1 ARCHITECTURE AND THE PDP-11 FAMILY
INTRODUCTION . . .

THE PDP-11 FAMILY OOZOmE, et

PDP-11 ARCHITECTURE AND SYSTEM UmmﬂOmZ_bZOm
EVOLUTION OF THE PDP-11

PDP-11 MILESTONES

EVOLUTION OF THE LSI-11 .

PDP-11 FAMILY ALBUM.

CHAPTER 2 KEY ELEMENTS OF PDP-11 ARCHITECTURE
INTRODUCTION

DATA REPRESENTATION. . . .

ADDRESSING AND REGISTERS.

INSTRUCTION SETS . .

TRAPS AND INTERRUPTS

MAPPING TO MEMORY AND wcmmmm

PDP-11 BUS STRUCTURES . . .

OTHER TOPICS (APPENDICES) .

CHAPTER 3 PDP-11 DATA REPRESENTATION
INTEGER DATATYPES . . .

CHARACTER DATATYPES . . .

DECIMAL STRING DATATYPES. . .
FLOATING-POINT DATA FORMATS .

CHAPTER 4 ADDRESSING MODES
REGISTER MODE.

REGISTER DEFERRED EOUm
AUTOINCREMENT MODE
AUTOINCREMENT DEFERRED _<_ODm
AUTODECREMENT MODE
AUTODECREMENT DEFERRED _<_O_um

INDEX MODE. . . .

INDEX DEFERRED _<_OUm RN

USE OF THE PC AS A GENERAL mmo_mﬁmm
PC IMMEDIATE MODE

PC ABSOLUTE MODE.

PC RELATIVEMODE

PC RELATIVE DEFERRED _<_ODm :
SUMMARY OF ADDRESSING MODES
GRAPHIC SUMMARY OF PDP-11 ADDRESSING ZOUmm

CHAPTER 2
KEY ELEMENTS OF PDP-11 ARCHITECTURE

INTRODUCTION

This chapter is a brief introduction to the main elements of PDP-11 ar-
chitecture. As we introduce each topic in this chapter, we will refer
you to a specific chapter for details. Key elements of PDP-11 architec-
ture include:

e Data representation

e Addressing and registers

e The PDP-11 instruction sets

e Traps and interrupts

e Mapping of memory and busses

e PDP-11 bus structures -

DATA REPRESENTATION

The PDP-11 architecture accommodates a variety of data types, which
may be separated into categories according to the groups of instruc-
tions that manipulate them. They are:

e |nteger data
e Floating point data
e String data

Integer data types are manipulated by the basic PDP-11 instruction
set. The string data types are manipulated by the Commercial Instruc-
tion Set, which is offered as an option on some PDP-11 processors.
Floating-point data types are manipulated by the Floating-Point In-
struction Set (FP-11) which runs on a Floating-Point Processor (FPP).
An FPP may be either a separate processor or a microcode option.

Data representation is treated in detail in Chapter 3.

Integer data types include 8-bit bytes and 16-bit words. Integer data
types are stored in memory in binary form, which is represented entire-
ly in ones and zeroes. (Computers use binary representation because
it is simple: a one can be represented by the presence of a charge or a
switch set on, while a zero can be the absence of charge or a switch
set off. Thus, a large number could be represented by a series of
switches set on or off to represent binary digits.) In an integer data
word or byte, the leftmost, or most significant bit (MSB) can be used as
a sign bit. The MSB is always zero for positive values and one for nega-
tive values.

27

Chapter 2 — Key Elements of PDP-11 Architecture

Floating point data types are the computer’s way of handling very
large or small numbers. They represent approximations to quantities
using a scientific notation consisting of a sign, the exponent of a pow-
er of two, and a fraction between .5 (inclusive) and 1.0 (exclusive). The
FP11 instruction set provides two types of floating point data, one 32-
bits long and the other 64-bits long. The 32-bit data are called single-
precision floating, or just floating; the 64-bit data are called double-
precision floating or just double.

The instructions that manipulate floating point data are explained in
Chapter 6. {

String data types may be divided into two categories:
e Character string data
e Decimal string data

Character string data have their own data type in the Commercial In-
struction Set (hereafter called CIS). A character string consists of a
contiguous sequence of bytes in memory specified by beginning ad-
dress and length. This data type is useful when representing names,
data records, or text. The manipulations done on character strings in-
clude copying, searching, concatenating, and translating. A character
string that contains ASCII codes for decimal digits is called a numeric
string. 2

The CIS is treated in detail in Chapter 7.

Decimal string data have two data types: numeric strings and packed
strings. Both have similar arithmetic and operational properties; they
differ primarily in their representation of signs and the placement of
digits in memory. Decimal strings are used to represent numbers in
decimal form (which may not be used for computation), as opposed to
binary integer form.

ADDRESSING AND REGISTERS

Within the processor there are locations called general purpose regis-
ters (GPRs) that can be used for temporary data storage, addressing,
and as accumulators during computations. Eight 16-bit general pur-
pose registers are available for use with the PDP-11 instruction set,
but some of these registers have special uses. For example, one regis-
ter is designated the Program Counter (PC); another is the Stack
Pointer (SP).

Any operation performed by the computer can be specified by an in-
struction. Each instruction specifies:

e Function to be performed (operation code)

e General purpose register to be used in locating the data (operand)

28

Chapter 2 — Key Elements of PDP-11 Architecture

e Addressing mode to specify how the registers are used

The datum being manipulated by an instruction is called the instruc-
tion operand. An instruction operand can be located in main memory,
in a general register, or in the instruction itself. The method for speci-
fying an operand’s location is called the operand addressing mode.
These addressing modes use the registers in a variety of ways to lo-
cate the operand or its address. Addressing and registers are ex-
plained further in Chapter 4.

INSTRUCTION SETS

There are three instruction sets available on PDP-11 processors:
e PDP-11

e Floating-point

e Commercial

The PDP-11 instruction set is standard on all PDP-11 family proces-
sors; the Commercial Instruction Set and the Floating-Point Instruc-
tion Set are optional on certain processors.

PDP-11 Instruction Set

The PDP-11 instruction set offers a wide selection of operations and
addressing modes. There are seven categories of PDP-11 instructions:
e Single-operand

e Double-operand

e Branch

e Jump and Subroutine

e Trap

e Miscellaneous

e Condition code

To save memory space and simplify control and communications,
PDP-11 instructions allow byte and word addressing in both single-op-
erand and double-operand formats. Double-operand instructions let
you perform several operations with a single instruction. Branch,
jump, and subroutine instructions each provide a means for diverting
program flow to a specified location. Trap instructions specify anoth-
er form of change in program flow, but to a predetermined location.
Condition code instructions set or clear the condition codes (four bits
in the Processor Status Word [PSW] indicating the results of previous
instructions).

29

Chapter 2 — Key Elements of PDP-11 Architecture

See Chapter 5 for more information on the PDP-11 instruction set.

Floating-Point Instruction Set

Floating point data types are manipulated by the Floating-Point In-
struction Set (FP-11), which runs on an optional floating-point proces-
sor, which may be either a separate processor or microcode. (A micro-
coded floating point processor is standard on the J-11 chipset.)

The Floating-Point Instruction Set is described in Chapter 6.

Commercial Instruction Set

COBOL processing makes extensive use of string data types, which
are manipulated by the Commercial Instruction Set (CIS). The CIS is
offered as an option on some PDP-11 processors.

The CIS is discussed in Chapter 7.

TRAPS AND INTERRUPTS

Processor Traps

PDP-11 processor traps are triggered by power failures and certain
hardware and software errors. Processor traps protect the pro-
grammer and the processor. They save the current PC and Processor
Status Word (PSW) and pass control to a trap-handling routine. This
saves the programmer work. They also protect the processor and the
operating system, if the nqooﬁw:::ma inadvertantly codes an illegal in-
struction, or an instruction which might violate the integrity of the op-
erating system. A trap causes the processor to execute instructions
pointed to by a certain permanently assigned address. Trap instruc-
tions are used to make an orderly transition to the trap routine and
save the context of the CPU.

Interrupts

Interrupts are used by certain system devices to reduce their wait for
CPU service. PDP-11 processors offer the programmer fast interrupt
handling. Only four memory cycles are required from the time an inter-
rupt request is issued until the first instruction of the interrupt routine
begins execution. By using interrupts, the processor is relieved of
doing routine control functions for peripheral devices. Instead, the
processor can ignore the peripheral, which may be reading a tape or
doing some time-consuming operation, until the peripheral is finished
and has data ready for the CPU. Then the device will use an interrupt
to get the CPU’s attention before it can execute the next instruction.

Traps and interrupts are examined in Chapter 8.
MAPPING TO MEMORY AND BUSSES
Memory management matches the virtual addresses generated by the

30

Chapter 2 — Key Elements of PDP-11 Architecture

CPU with physical addresses in memory and with physical /0 bus ad-
dresses. It also protects operating system software and shared
routines from modification and allocates protected memory space for
each user. The UNIBUS map is a hardware device separate from the
memory management unit. The UNIBUS map converts 18-bit UNIBUS
addresses to 22-bit memory addresses. There is no map on the extend-
ed LSI-11 Bus. Processors and peripherals can generate and present
22-bit addresses directly to the extended LSI-11 Bus.

Memory management and bus mapping are described in Chapter 9.

PDP-11 BUS STRUCTURES

The two PDP-11 physical 1/0 busses—the UNIBUS and the LSI-11
Bus—are both covered in Chapter 10. The brief, tutorial overview of
the UNIBUS and LSI-11 Bus found in that chapter is augmented by ap-
pendices that contain timing diagrams and technical specifications.

UNIBUS

The UNIBUS, DIGITAL’s unique data bus, was the first data bus in the
history of the minicomputer industry to enable devices to send,
receive, or exchange data without processor intervention or intermedi-
ate buffering in memory. The UNIBUS forms the hardware and soft-
ware backbone of the PDP-11/24 and PDP-11/44 processors. Memory
elements on the UNIBUS have ascending addresses starting at zero,
while registers storing 1/O data or the status of individual peripheral
devices have addresses in the highest 8 Kbytes of addressing space.
Peripheral devices may have one or more addresses.

LSI-11 Bus

The LSI-11 Bus is the low-end member of DIGITAL’s bus family. Most
DIGITAL microcomputers use the LSI-11 Bus or the extended LSI-11
Bus. The LSI-11 Bus operates very much like the UNIBUS, but to make
it more cost-effective for microcomputer applications, it has fewer sig-
nal lines. Both the LSI-11 Bus and the UNIBUS are treated in Chapter
10.

OTHER TOPICS (APPENDICES)

Other topics related to PDP-11 architecture are included in appen-
dices. The topic of each appendix is listed and briefly discussed be-
low.

Assignment of Bus Addresses and Vectors

Appendix A covers both the LSI-11 Bus and the UNIBUS. Topics cov-
ered include:

e |/O Page Device Addresses

31

Chapter 2 — Key Elements of PDP-11 Architecture

e |nterrupt and Trap.Vectors

e Priority Ranking for Floating Vectors
e Floating CSR Address Devices

e Device Addresses

PDP-11 Family Differences

Appendix B contains a family differences table that shows in detail
the issues involved in software migration between PDP-11 family
members. Any program developed using PDP-11 operating systems
with higher level languages will migrate with very little difficulty. Cer-
tain assembly language applications may require slight modifications
for a smooth migration.

The Floating Instruction Set

The Floating Instruction Set (FIS) is a software option for the LSI-11/2
processor. The FIS consists of four special floating instructions that
accelerate floating point calculations. The FIS is covered in Appendix
G

UNIBUS Timing Diagrams
UNIBUS timing diagrams and other technical details are given in Ap-
pendix D.

LSl-11 Bus Technical Specifications
Topics covered in Appendix E include LSI-11 Bus timing diagrams, and
bus pin-out descriptions.

Programming Techniques

PDP-11 processors offer the programmer a combination of flexibility
and power. The instruction set, addressing modes, and programming
techniques play together to help you develop new software or use ex-
isting software. Programming techniques that pertain to architecture
are included in this handbook. These include:

e Stacks

e Subroutine linkage

e Reentrancy

Stacks are a basic element of the PDP-11 architecture. They are areas
of memory set aside by the programmer or the operating system for
temporary storage and linkage. A stack is handled on a last-in/first-out
(LIFO) basis: items are retrieved in the reverse of their storage order. A
PDP-11 stack starts at the highest location reserved for it and expands
downward to lower addresses as items are added.

Often, one of the general purpose registers must be used in a subrou-
tine or interrupt service routine and then returned to its original value.

32

Chapter 2 — Key Elements of PDP-11 Architecture

A stack can be used to store the contents of the registers involved. A
stack is also useful to store the linkage information between a subrou-
tine and its calling program. In many cases, operations performed by
the subroutine can be applied directly to data located on or referenced
by the stack without actually moving the data into the subroutine.

Reentrancy is the ability to share a single copy of a program among
different users or different tasks. This makes more efficient use of
memory. Reentrant routines differ from ordinary subroutines in that it
is not necessary for reentrant routines to finish processing a given
task before they can be used by another task.

PDP-11 programming techniques and examples are covered in Appen-
dix F.

Glossary

For definitions of terminology used in this book, refer to the Glossary.
The Glossary is at the end of the book, between Appendix F and the
Index.

33

CHAPTER 3
DATA REPRESENTATION

Data representation is an important aspect of computer architecture.
To deal efficiently with different kinds of information, a computer ar-
chitecture must allow for a range of data types. The programmer’s
choice of data type should be a function of the application rather than
the computer. However, some computers must use nonstandard ad-
dressing techniques with certain data types. These computers require
more memory and will execute applications more slowly when using
these “problem” data types. PDP-11 architecture avoids these com-
promises. You can use the data type that best suits your application
without worrying about nonstandard addressing techniques.

Another feature of the PDP-11 family’s data types is upward compati-
bility. The PDP-11 data types are a subset of the VAX-11 data types.
This can be very convenient if you want to transfer your PDP-11 appli-
cation to an environment with 32-bit addressing.

The PDP-11 data types may be separated into categories according to
the groups of instructions that operate on them. They are:

e [nteger data

e Character string data
e Decimal string data
e Floating point data

Integer data types are supported by the basic PDP-11 instruction set.
The string data types are used by the Commercial Instruction Set,
which is offered as an option on some PDP-11 processors. Floating
point data types are manipulated by the Floating-Point Instruction Set
(FP-11) which runs on a Floating-Point Processor (FPP) which may be
either a separate processor or microcode.

The Commercial Instruction Set (CIS-11) is treated in detail in Chapter
Seven. The floating point instructions are described in Chapter 6 (The
Floating Point Processor—FP-11) and in Appendix C (The Floating In-
struction Set—FIS).

INTEGER DATA TYPES

Integer data types include 8-bit bytes, and 16-bit words. Integer data
types are stored in memory in binary form, which is represented entire-
ly in ones and zeroes. As unsigned quantities, integers extend upward
from 0. As signed quantities, the integers are represented in two’s
complement form. This means that a negative number is one greater
than the bit-by-bit complement of its positive counterpart. Thus, posi-

35

Chapter 3 — PDP-11 Data Representation

tive numbers have a 0 most significant bit (MSB). The MSB or sign bit
is always 1 for negative values.

Byte

A byte is eight contiguous bits starting on an addressable byte bound-
ary or located in a register, Rn <7:0>. The bits are numbered from the
right O through 7. The byte is specified by its address A. When inter-
preted as a signed quantity, a byte is a two’s complement integer with
bits increasing in significance from 0 through 6, and with bit 7 desig-
nating the sign. The value of the integer is in the range — 128 through
127.

For the purposes of addition, subtraction, and comparison, PDP-11 in-
structions also provide direct support for the interpretation of a byte
as an unsigned integer with a value in the range 0 through 255.

Word
A word, two contiguous bytes, starts on an arbitrary word boundary or
is located in a register Rn<15:0>.

Words are specified by their address A, the address of the byte con-
taining bit 0. When interpreted as a signed quantity, a word is a two’s
complement integer with bits increasing in significance from 0
through 14, and with bit 15 designating the sign. The value of the in-
teger is in the range — 32768 through 32767. For the purposes of addi-
tion, subtraction, and comparison, PDP-11 instructions also provide
direct support for the interpretation of a word as an unsigned integer
with a value in the range 0 through 65535.

CHARACTER DATA TYPES

There are three different character data types. The ‘“character” is a
single byte, and is an abbreviated string of length 1. The ‘““‘character
string” is a contiguous group of bytes in memory. The third is a “char-
acter set.”

The character is an 8-bit byte:

7 0
A ﬁ char

The character is used as an operand by CIS-11 instructions. When it
appears in a general register, the character is in the low-order half; the
high-order half of the register must be zero. When it appears in the in-
struction stream, the character is in the low-order half of a word; the
high-order half of the word must be zero. If the high-order half of a
word which contains a character is nonzero, the effect of the instruc-
tion which uses it will be UNPREDICTABLE.

36

Chapter 3 — PDP-11 Data Representation

A character string is a contiguous sequence of bytes in memory that
begins and ends on a byte boundary. It is addressed by its most mE:.:.
icant character (lowest address). The highest address is the least sig-
nificant character. It is specified by a two-word descriptor with the at-
tributes of length and lowest address. The length is an unsigned
binary integer which represents the number of characters in the string
and may range from 0 to 65,535. A character string with zero length is
said to be vacant: its address is ignored. A character string with non-
zero length is said to be occupied.

The character string descriptor is used as an operand by CIS-11 in-
structions. It munmmqm in two consecutive general registers, or in two
consecutive words in memory pointed to by a word in the instruction
stream. The following figure shows the descriptor for a character
mE:o of length “n” starting at address ““A” in memory:

Rx ptr

OR
Rx+ 1 ptr+2 A

The following figure shows the character string in memory:

7 0

A ﬁ MOST SIG CHAR
A+ ﬁ _

A+n-1 — LEAST SIG CHAR *

A “‘character set” is a subset of the 256 possible characters that can
be encoded in a byte. It is specified by a descriptor which consists of
the address of a 256-byte table and an 8-bit mask. The address is of
the zeroth byte in the table. Each byte in the table specifies up to eight
orthogonal character subsets of which the corresponding character is
a member. The mask selects which combinations of these orthogonal
subsets constitute the entire character set. In effect, each bit in the
mask corresponds to one of eight orthogonal subsets that may be en-

37

Rx

Rx+) pre+2

Chapter 3 — PDP-11 Data Representation

coded by the table. The mask specifies the union of the selected sub-
sets into the character set. Typical sets would be: uppercase, lower-
case, nonzero digits, end of line, etc.

Operationally, a character (char) is considered to be in the character
set if the evaluation of (M[table.adr + char] AND mask) is not equal to
zero. The character is not in the character set if the evaluation is zero.
Each byte in the table indicates which combination of up to eight
orthogonal character subsets (i.e., one for each of the eight bit vectors
00000001 00000010 00000100 00001000 00010000. 00100000:
01000000. and 10000000;) the corresponding character is a member.
The mask specifies which union of the eight orthogonal character sub-
sets constitute the total character set. For example, if the eight-bit
vector 000000012 appearing in the table corresponds to the character
subset of all uppercase alphabetic characters, 00000010, appearingin
the table corresponds to the character subset of all lowercase alpha-
betic characters, and 00000100 appearing in the table corresponds to
the decimal digits, then using the mask 00000011, with this table spec-
ifies the character set of all alphabetic characters, and using the mask
00000111, specifies the character set of all alphanumeric characters.

The character set descriptor is used as an operand by CIS-11 intruc-
tions. It appears in two consecutive general registers, or in two con-
secutive words in memory pointed to by a word in the instruction
stream. If the high-order half of the first descriptor word is nonzero,
the effect of an instruction which uses a character set will be UNPRE-
DICTABLE.

OR By 0 mask

TABLE ADDRESS

DECIMAL STRING DATA TYPES

Two classes of decimal string data types—numeric strings and
packed strings—are defined. Both have similar arithmetic and opera-
tional properties; they primarily differ in the representation of signs
and the placement of digits in memory.

The numeric string data types are signed zoned, unsigned zoned, trail-
ing overpunch, leading overpunched, trailing separate and leading
separate. The packed string data types are signed packed and un-
signed packed. Instructions which operate on numeric strings permit
each numeric string operand to be separately specified; similarly,

38

Chapter 3 — PDP-11 Data Representation

packed string instructions permit each packed string operand to be
separately specified. Thus, within each of the two classes of decimal
strings, the operands of an instruction may be of any data type within
the appropriate class.

Decimal strings exist in memory as contiguous bytes which begin and
end on a byte boundary. They represent numbers consisting of 0 to 31+
digits, in either sign-magnitude or absolute-value form. Sign-magni-
tude strings (SIGNED) may be positive or negative; absolute-value
strings (UNSIGNED) represent the absolute value of the magnitude.
Decimal numbers are whole integer values with an implied decimal ra-
dix point immediately beyond the least significant digit; they may be
conceptually extended with zero digits beyond the most significant di-
git.

A four-bit binary coded decimal representation is used for most digits
in decimal strings. A four-bit half byte is called a “‘nibble” and may be
used to contain a binary bit pattern which represents the value of a
decimal digit. The following table shows the binary nibble contents as-
sociated with each decimal digit:

digit nibble digit nibble
0 0000 5 0101
1 0001 6 0110
2 0010 7 0111
3 0011 8 1000
4 0100 9 1001

Each decimal string data type may have several representations.
These representations permit a certain latitude when accepting
source operands. Decimal string data types have a PREFERRED repre-
sentation, which is a valid source representation and which is used to
construct the destination string. Additional ALTERNATE representa-
tions are provided for some decimal data types when accepting
source operands.

Decimal strings used as source operands will not be checked for valid-
ity. Instructions will produce UNPREDICTABLE results if a decimal
string used as a source operand contains an invalid digit encoding,
invalid sign designator, or, in the case of overpunched numbers, an
invalid sign/digit encoding.

When used as a source, decimal strings with zero magnitude are
unique, regardless of sign. Thus, both positive and negative zero have
identical interpretations.

Conceptually, decimal string instructions first determine the correct
result, and then store the decimal string representation of the correct

39

Chapter 3 — PDP-11 Data Representation

result in the destination string. A result of zero magnitude is consid-
ered to be positively signed. If the destination string can contain more
digits than are significant in the result, the excess most significant
destination string digits have zero digits stored in them. If the destina-
tion string cannot contain all significant digits of the result, the ex-
cess most significant result digits are not stored; the instruction will
indicate decimal overflow. Note that negative zero is stored in the des-
tination string as a side effect of decimal overflow where the sign of
the result is negative and the destination is not large enough to con-
tain any nonzero digits of the result.

If the destination string has zero length, no resulting digits will be
stored. The sign of the result will be stored in separate and packed
strings, but not in zoned and overpunched strings. Decimal overflow
will indicate a nonzero result.

Decimal String Descriptors

Decimal strings are represented by a two-word descriptor. The des-
criptor contains the length, data type, and address of the string. It ap-
pears in two consecutive general registers (register form of instruc-
tions), or in two consecutive words in memory pointed to by a word in
the instruction stream (in-line form of instructions). The unused bits
are reserved by the architecture and must be 0. The effect of an in-
struction using a descriptor will be unpredictable if any nonzero re-
served field in the descriptor contains nonzero values or a reserved
data type encoding is used. The design of the numeric and packed
string descriptors are identical:

First Word

length <4:0> ZC.BUQ of digits specified as an unsigned bina-
ry integer

data type Specifies which decimal data type representa-

<14:12> tion is used

Second Word

address Specifies the address of the byte which contains

<15:0> the most significant digit of the decimal string

The following figure shows the descriptor for a decimal string of data
type “T” whose length is “‘L” digits and whose most significant digitis
at address “A”:

15 14 1265 210 S| 4 0

ptr 0 T 0 L

Chapter 3 — PDP-11 Data Representation

The encodings (in binary) for the NUMERIC string data type field are:

000 signed zoned
001 unsigned zoned
010 trailing overpunch

011 leading overpunch

100 trailing separate

101 leading separate

110 —reserved to DIGITAL
111 —reserved to DIGITAL
The encodings (in binary) for the PACKED string data type field are:
000 —reserved to DIGITAL
001 —reserved to DIGITAL
010 —reserved to DIGITAL
011 —reserved to DIGITAL
100 —reserved to DIGITAL
101 —reserved to DIGITAL

110 signed packed
111 unsigned packed

Packed Strings

Packed strings can store two decimal digits in each byte. The least
significant (highest addressed) byte contains the sign of the number
in bits <3:0> and the least significant digit in bits <7:4>.

Signed Packed Strings — The preferred positive sign designator is
1100;; alternate positive sign designators are 1010z, 1110. and 1111..
The preferrred negative sign designator is 11012 the alternate nega-
tive sign designator is 1011.. Source strings will properly accept both
the preferred and alternate designators; destination strings will be
stored with the preferred designator.

Unsigned Packed Strings — The unsigned sign designator is 1111..

' PACKED SIGN NIBBLE (in binary):

sign preferred alternate

nibble designator designators
positive 1100 1010, 1110, 1111
negative 1101 1011

unsigned 1111

For other than the least significant byte, bytes contain two consecu-
tive digits—the one of lower significance in bits <3:0> and the one of
higher significance in bits <7:4>. For numbers whose length is odd,
the most significant digit is in bits <7:4> of the lowest addressed

41

Chapter 3 — PDP-11 Data Representation

c.ﬁmm. Numbers with an even length have their most significant digit in
bits <3:0> of the lowest addressed byte; bits <7:4> of this byte must
cm.NmS for source strings, and are cleared to 0000 for destination
mq_:@m. Numbers with a length of one occupy a single byte and con-
tain their digit in bits <7:4>. The number of bytes which represent a
packed string is [length/2] + 1 (integer division where the fractional
portion of the quotient is discarded).

The following is a packed string with an odd number of digits:

A +(LENGTH/2) Isd sign “

The following is a packed string with an even number of digits:

ERRuEeT

A+ (LENGTH/2) Isd — sign h

A zero-length packed string occupies a single byte of storage; bits
<7:4> of this byte must be zero for source strings, and are o_mmmma to
0000 for destination strings. Bits <3:0> must be a valid sign for
source strings, and are used to store the sign of the result for destina-
tion strings. When used as a source, zero-length strings represent op-
erands with zero magnitude. When used as a destination they can
only reflect a result of zero magnitude without m:amom::@_ overflow.
The following is a zero-length packed string: ; :

42

Chapter 3 — PDP-11 Data Representation

74 4 3 0

>ﬁ 0 e L

A valid packed string is characterized by:

1. Alength from 0 to 31+ digits.

2. Every digit nibble is in the range 0000z to 1001..

3. For even length sources, bits <7:4> of the lowest addressed
byte are 0000..

4. Signed packed strings—sign nibble is either 1010;, 1011, 1100,
,_A_O._m. 11102 0r 11112.

5. Unsigned packed strings—sign nibble is 1111..

Zoned Strings

Zoned strings represent one decimal digit in each byte. Each byte is
divided into two portions—the high-order nibble (bits <7:4>) and the
low-order nibble (bits <3:0>). The low-order nibble contains the value
of the corresponding decimal digit.

Signed Zoned Strings — When used as a source string, the high-order
nibble of the least significant byte contains the sign of the number;

_the high-order nibbles of all other bytes are ignored. Destination

strings are stored with the sign in the high-order nibble of the least
significant byte, and 0011: in the high-order nibble of all other bytes.
0011: in the high-order nibble corresponds to the ASCII encoding for
numeric digits. The positive sign designator is 0011z the negative sign
designator is 0111

Unsigned Zoned Strings — When used as a source string, the high-
order nibbles of all bytes are ignored. Destination strings are stored
with 00112 in the high-order nibble of all bytes.

The number of bytes needed to contain a zoned string is identical to
the length of the decimal number.

- ‘SIGN’ IS PRESENT ONLY
Asnod s1on s SIGNED ZONED STRINGS

43

Chapter 3 — PDP-11 Data Representation

A zero-length, zoned string does not occupy memory; the address por-
tion of its descriptor is ignored. When used as a source, zero length
strings provide operands with zero magnitude; when used as a desti-
nation, they can only accurately reflect a result of zero magnitude (the

sign of the operation is lost). An attempt to store a nonzero result will
be indicated by setting overflow.

A valid zoned string is characterized by:
1. Alength from 0 to 31« digits.

2. The low-order nibbles of each byte are in the range 0000: to
1001..

3. Signed zoned strings—The high order nibble of the least signifi-
cant byte is either 0011 or 0111..

Overpunch Strings

Overpunch strings represent one decimal digit in each byte. Trailing
overpunch strings combine the encoding of the sign and the least sig-
nificant digit; leading overpunch strings combine the encoding of the
sign and the most significant digit. Bytes other than the byte in which
the sign is encoded are divided into two portions—the high-order nib-
ble (bits <7:4>) and the low-order nibble (bits <3:0>). The low-order
nibble contains the value of the corresponding decimal digit. When
used as a source string, the.high-order nibble of all bytes which do not
contain the sign are ignored. Destination strings are stored with 0011,
in the high-order nibble of all bytes which do not contain the sign.

0011: in the high-order nibble corresponds to the ASCI| encoding for
numeric digits.

The following table shows the sign of the decimal string and the value
of the digit which is encoded in the sign byte. Source strings will prop-
erly accept both the preferred and alternate designators; destination
strings will store the preferred designator. The preferred designators
correspond to the ASCII graphics “A” to “R,” ** , 7 and ‘“.” The alter-
nate designators correspond to the ASCII graphics ““0” to Qi s
Slesiand

44

Chapter 3 — PDP-11 Data Representation

OVERPUNCH SIGN/DIGIT BYTE (in binary):

overpunch preferred alternate
sign/digit designator designators
+0 01111011 00110000, 01011011, 00111111
+1 01000001 00110001
+2 01000010 00110010
+3 01000011 00110011
+4 01000100 00110100
+5 01000101 00110101
+6 01000110 00110110
+7 01000111 00110111
+8 01001000 00111000
+9 01001001 00111001
-0 01111101 01011101, 00100001, 00111010
-1 01001010

-2 01001011

-3 01001100

-4 01001101

-5 01001110

-6 01001111

-7 01010000

-8 01010001

-9 01010010

The number of bytes needed to contain an overpunch string is identi-
cal to the length of the decimal number.

The following is a trailing overpunch string:

A+n-1 _‘ sign and Isd _

45

Chapter 3 — PDP-11 Data Representation

The following is a leading overpunch string:

7 4 3 0

‘| 3
o _ |

= B

A zero-length overpunch string does not occupy memory; the address
portion of its descriptor is ignored. When used as a source, zero-
length strings provide operands with zero magnitude; when used as a
destination, they can only accurately reflect a result of zero magni-
tude (the sign of the operation is lost). An attempt to store a nonzero
result will be indicated by setting overflow.

A valid overpunch string is characterized by:
1. Alength from 0 to 31« digits.

2. The low-order nibble of each digit byte is in the range 0000: to
1001..

3. The encoded sign/digit byte contains values from the above ta-
ble of preferred and alternate overpunch sign/digit values.

Separate Strings

Separate strings represent one decimal digit in each byte. Trailing
separate strings encode the sign in a byte immediately beyond the
least significant digit; leading separate strings encode the sign in a
byte immediately beyond the most significant digit. Bytes other than
the byte in which the sign is encoded are divided into two por-
tions—the high-order nibble (bits <7:4>) and the low-order nibble
(bits <3:0>). The low order nibble contains the value of the corre-
sponding decimal digit.

When used as a source string, the high-order nibbles of all digit bytes
are ignored. Destination strings are stored with 0011.in the high-order
nibble of all digit bytes. 0011z in the high-order nibble corresponds to
the ASCII encoding for numeric digits. The preferred positive sign de-
signator is 00101011. and the alternate positive sign designator is
00100000.. The negative sign designator is 00101101.. These designa-
tors correspond to the ASCII encoding for “ +,” “space,” and “ -.”

46

Chapter 3 — PDP-11 Data Representation

SEPARATE SIGN BYTE:

sign preferred alternate
byte designator designator
positive 00101011. 00100000:

negative 00101101
The number of bytes needed to contain a leading or trailing separate

string is identical to (length + 1).
The following is a trailing separate string:

[

a [

* EmesbicE
w |

a | e |

aenct | 1 7

47

Chapter 3 — PDP-11 Data Representation

A zero-length separate string occupies a single byte of memory which
contains the sign. When used as a source, zero-length strings provide
operands with zero magnitude; when used as a destination, they can
only reflect a result of zero magnitude without indicating overflow; the
sign of the result is stored.

The following is a zero-length trailing separate string:

A sign

The following is a zero-length leading separate string:

A-1 sign \?

A valid separate string is o:wﬂmoﬁmzwma by:
1. Alength from 0 to 31+ digits.

2. The low-order nibble of each digit byte is in the range 0000: to
1001..
3. The sign byte is either 00100000, 00101011, or 00101101-.

Long Integer :

Long integers are 32-bit binary two’s complement numbers organized
as two words in consecutive registers or in memory—no descriptor is
used. One word contains the high-order 15 bits. The sign is in bit
<15>; bit <14 > is the most significant. The other word contains the
low-order 16 bits with bit <0> the least significant. The range of num-
bers that can be represented is —2,147,483,648 to + 2,147,483,647.

The register form of decimal convert instructions uses a restricted
form of long integer with the number in the general register pair R2-R3:

Chapter 3 — PDP-11 Data Representation

The in-line form of decimal convert instructions reference the long in-
teger by a word address pointer which is part of the instruction
stream:

ptr LOwW

ptr+2 s HIGH

Note that these two representations of long integers differ. There is no
single representation of long integer among EAE, EIS, FPP and soft-
ware. The “register form” was selected to be compatible with EIS; the
“in-line form” was selected to be compatible with current standard
software usage.

FLOATING POINT DATA FORMATS

Floating point data are used only by processors which include a float-
ing point option (standard on the MICRO/J-11). The floating point in-
struction set (FP11) is covered in Chapter 6 of this book.

Mathematically, a floating point number may be defined as having the
form (2**K)*f, where K is an integer and f is a fraction. For a nonvan-
ishing number, K and f are uniquely determined by imposing the condi-
tion %2 < f < 1. The fractional part, f, of the number is then said to be
normalized. For the number 0, f must be assigned the value 0, and the
value of K is indeterminate.

The FP11 floating point data formats are derived from this mathemati-
cal representation for floating point numbers. The value of a floating
datum is in the approximate range .29*10** — 38 through 1.7*10* *38.
Two types of floating point data are provided. In single-precision, or
floating mode, the data are 32 bits long. In double-precision, or double
mode, the data are 64 bits long. Sign magnitude notation is used.

Nonvanishing Floating Point Numbers

The fractional part, f, is assumed to be normalized, so that its most
significant bit must be 1. This 1 is the hidden bit; it is not stored explic-
itly in the data word, but the microcode restores it before carrying out
arithmetic operations. The floating and double modes respectively re-
serve 23 and 55 bits for f. These bits, with the hidden bit, imply effec-
tive fractions of 24 bits and 56 bits.

Eight bits are reserved for storage of the exponent K in excess 128
(200s) notation (i.e., K + 200s), giving a biased exponent. Thus, expo-
nents from —128 to + 127 are represented by 0 to 377s, or 0 to 2551 .

49

Chapter 3 — PDP-11 Data Representation

For reasons listed below, a biased exponent of 0 (true exponent of
—200s), is reserved for floating point 0. Thus, exponents are restricted
to the range — 127 to + 127 inclusive (—177s to + 177s) or, in excess
200s notation, 1 to 377..

The remaining bit of the floating point word is the sign bit. The number
is negative if the sign bitisa 1.

Floating Point Zero

Because of the hidden bit, the fractional part is not available to distin-
guish between 0 and nonvanishing numbers whose fractional part is
exactly 2. Therefore, the FP11 reserves a biased exponent of 0 for this
purpose, and any floating point number with a biased exponent of 0
either traps or is treated as if it were an exact 0 in arithmetic opera-
tions. An exact or clean 0 is represented by a word whose bits are all
0s. Adirty O is a floating point number with a biased exponent of 0 and
a nonzero fractional part. An arithmetic operation for which the result-
ing true exponent exceeds 177s is regarded as producing a floating
overflow; if the true exponent is less than — 177s, the operation is re-
garded as producing a floating underflow. A biased exponent of 0 can
thus arise from arithmetic operations as a special case of overflow
(true exponent = —200s). Only eight bits are reserved for the biased
exponent. The fractional part of results obtained from such overflow
and underflow is correct.

The Undefined Variable

The undefined variable is defined as any bit pattern with a sign bit of 1
and a biased exponent of 0. The term undefined variable is used, for
historical reasons, to indicate that these bit patterns are not assigned
a corresponding floating point arithmetic value. Note that the unde-
fined variable is frequently referred to as — 0 elsewhere in this specifi-
cation.

A design objective of the FP11 was to assure that the undefined varia-
ble would not be stored as the result of any floating point operation in
a program run with the overflow and underflow interrupts disabled.
This objective is achieved by storing an exact 0 on overflow and under-
flow, if the corresponding interrupt is disabled. This feature, together
with an ability to detect reference to the undefined variable imple-
mented by the FIUV bit mentioned later, is intended to provide the
user with a debugging aid. If —0 occurs, it did not result from a previ-
ous floating point arithmetic instruction.

Floating Point Data
Floating point data are stored in words of memory as illustrated:

F FORMAT. FLOATING POINT SINGLE PRECISION
15

00
*2 FRACTION 150>
i 1 L 1 i L L L L L L 1 L L 1

15 14 07 06 00

MEMORY .o— S — EXP FRACT <22:16> \—
L 1

Figure 3-1 Single-Precision Format

D FORMAT, FLOATING POINT DOUBLE PRECISION

15 00
FRACTION <15:0>
1 L L 1 L L ! 1 It L I 1 1 1 B

15 00
4 FRACTION <31:16> _
s I 1 L 1 1 L L 1 L L ! 1 1 It
15 00
+2 — FRACTION <47:32>> \—
1 Bt i L 1 L L L L i It L 1 I L
07 06 00

15
MEMORY +0Q 5, EXP FRACT -.54:48"
L L 1 i 1 1 L L 4 L 1

I 8

S SIGN OF FRACTION

EXP - EXPONENT IN EXCESS 200 NOTATION, RESTRICTED TO 1 TO 377 OCTAL
FOR NON VANISHING NUMBERS

FRACTION 23 BITSIN F FORMAT, 55 BITS IN D FORMAT + ONE HIDDEN
BIT (NORMALIZATION). THE BINARY RADIX POINT IS TO THE LEFT

Figure 3-2 Double-Precision Format

The FP11 provides for conversion of floating point to integer format
and vice versa. The processor recognizes single-precision integer (1)
and double-precision integer long (L) numbers, which are stored in
standard two’s complement form.

CHAPTER 4
ADDRESSING MODES

In the PDP-11 family, all operand addressing is accomplished through

the general purpose registers. To specify the location of data (operand

address), one of eight registers is selected with an accompanying ad-

dressing mode. Each instruction specifies the:

e Function to be performed (operation code)

e General purpose register to be used when locating the source op-
erand and/or destination operand (where required)

e Addressing mode, which specifies how the selected registers are
to be used

The instruction format and addressing techniques available to the pro-
grammer are of particular importance. This combination of addressing
modes and the instruction set provides the PDP-11 family with a
unique number of capabilities. The PDP-11 is designed to handle
structured data efficiently and with flexibility. The general purpose re-
gisters implement these functions in the following ways, by acting:

e As accumulators: holding the data to be manipulated

® As pointers: the contents of the register are the address of the op-
erand, rather than the operand itself

e As index registers: the contents of the register are added to an ad-
ditional word of the instruction to produce the address of the oper-
and,; this capability allows easy access to variable entries in a list

Using registers for both data manipulation and address calculation re-
sults in a variable length instruction format. If registers alone are used
to specify the data source and destination, only one memory word is
required to hold the instruction. In certain modes, two or three words
may be utilized to hold the basic instruction components. Special ad-
dressing mode combinations enable temporary data storage for con-
venient dynamic handling of frequently accessed data. This is known
as stack-addressing. For a discussion about using the stack, please
refer to Appendix F. Register 6 is always used as the hardware stack
pointer, or SP. Register 7 is used by the processor as its program
counter (PC). Thus, the register arrangement to be considered in con-
junction with instructions and with addressing modes is: registers 0-5
are general purpose registers, register 6 is the hardware stack pointer,
and register 7 is the program counter. See Chapter 5 for a description
of the full instruction set and its formats.

53

Chapter 4 — Addressing Modes

To illustrate the use of the various addressing modes clearly, the fol-
lowing instructions are used in this chapter:

Mnemonic Description Octal Code

CLR Clear (Zero the specified desti- 0050DD
nation word.)

CLRB Clear Byte (Zero the specified 1050DD
destination byte.)

INC Increment (Add one to contents 0052DD
of destination word.)

INCB Increment Byte (Add one to the 1052DD
contents of the destination
byte.)

COM Complement (Replace the con- 0051DD

tents of the destination by its
logical one’s complement.
Each 0 bit is set and each 1 bit
is cleared.)

COMB OOBU_meE Byte (Replace the .1051DD
contents of the destination
byte by its logical one’s com-
plement. Each 0 bit is set and
each 1 bit is cleared.)

ADD Add (Add the source operand to 06SSDD
the destination operand and
store the result at the destina-
tion address.)

DD = destination field (6 bits)
SS = source field (6 bits)
() = contents of

54

Chapter 4 — Addressing Modes

Single- and double-operand instructions use the following formats:

The instruction format for the first word of all single-operand instruc-
tions (such as clear, increment, test) is:

OP CODE ! \q
DESTINATION ADDRESS

* SPECIFIES DIRECT OR INDIRECT ADDRESS
* * SPECIFIES HOW REGISTER WILL BE USED
¢ ** SPECIFIES ONE OF 8 GENERAL PURPOSE REGISTERS

Single-Operand Instruction Format

The instruction format for the first word of the aoczm-oum.ﬂm:a instruc-
tion is:

SOURCE ADDRESS » a
DESTINATION ADDRESS

* DIRECT DEFERRED BIT FOR SOURCE AND DESTINATION ADDRESS
** SPECIFIES HOW SELECTED REGISTERS ARE TO BE USED
*** SPECIFIES A GENERAL REGISTER

Double-Operand Instruction Format

Bits 5:3 of the source or destination fields specify the binary code of
the addressing mode chosen. Bits 2:0 specify the general register to
be used.

The four basic addressing modes are:

e Register

e Autoincrement

e Autodecrement

e |ndex

In a register mode, the content of the selected register is taken as the
operand. In autodecrement mode, after the register has been modi-
fied, it contains the address of the operand. In autoincrement mode, at

the start of the instruction execution, the register contains the ad-
dress of the operand, and, after the instruction is executed, the ad-

55

Chapter 4 — Addressing Modes

dress of the next higher word or byte memory location. In index mode,
the register is added to the displacement, X, to produce the address of

the operand.

When bit 3 of the source/destination field is set, indirect addressing is
specified and the four basic modes become deferred modes.
Prefacing the register operand(s) with an “@?” sign or placing the reg-
ister in parentheses indicates to the MACRO-11 assembler that
deferred (or indirect) addressing mode is being used.

The indirect addressing modes are:

e Register deferred

e Autoincrement deferred

e Autodecrement deferred

e Index deferred

Program counter (register 7) addressing modes are:

e Immediate

e Absolute

e Relative

e Relative deferred

The addressing modes are explained and shown in examples in the
following pages. They are summarized, in text and in graphic represen-
tation, at the end of the chapter.

REGISTER MODE MODE 0 Rn

Register mode provides faster instruction execution. There is no need
to reference memory to retrieve an operand. Any of the general regis-
ters can be used as a simple accumulator. The operand is containedin
the selected register (low-order byte for byte operations). Some as-
semblers require that a general register be defined as follows:

RO = %0
R1 = %1
R2 = %2

% indicates register amz::_o: (as originally known to the assembler).

Register Mode Example

Symbolic ! Instruction Description
Octal Code
INC R3 005203 Add one to the con-
tents of R3.
56

Chapter 4 — Addressing Modes

Represented as:

RO
R
R2

ﬁo MBI T) c_o 0 omo 1 |SELECE o
Ca i it . REGISTER |t]
J5 6543 2 o Ra
or CODE INE(D0SZN— Q o RS e
DESTINATION FIELD R6 (SP)
S L

R7 (PC)

Register Mode Example

Symbolic Instruction Description
Octal Code
ADD R2,R4 060204 Add the contents of

R2 to the contents
of R4, replacing the
original contents of
R4 with the sum.

Represented as:

BEFORE AFTER

REGISTER DEFERRED MODE MODE 1 @Rnor(Rn)

In register deferred mode, the address of the operand is stored in a
general purpose register. The address contained in the general pur-
pose register directs the CPU to the operand. The operand is located
outside the CPU’s general purpose registers, eitherin memory or inan
1/0 register.

This mode is used for sequential lists, indirect pointers in data struc-
tures, top-of-stack manipulations, and jump tables.

Register Deferred Mode Example

Symbolic Instruction Description
Octal Code
CLR (R5) 005015 The contents of the

location specified
in R5 are cleared.

57

Chapter 4 — Addressing Modes

Represented as:

BEFORE AFTER
ADDRESS SPACE REGISTER ADDRESS SPACE REGISTER

1676 ﬁ] Rs | 001700] ere [] s [001700 L
1700 h 000100 1700 000000
l/ l/

AUTOINCREMENT MODE MODE 2 (Rn)+

In autoincrement mode, the register contains the address of the oper-
and; the address is automatically incremented after the operand is re-
trieved. The address then references the next sequential operand. This
mode allows automatic stepping through a list or series of operands
stored in consecutive locations. When an instruction calls for mode 2,
the address stored in the register is incremented each time the in-
struction is executed. It is incremented by one if you are using byte
instructions, by two if you are using word instructions. However, R6
and R7 are always incremented by two.

To make it easy to remember that the register is incremented after
use, the + sign follows the register name.
\

Autoincrement Mode Example

Symbolic Instruction Description
Octal Code
CLR (R5) + 005025 Contents of R6 are

used as the address
of the operand.
Clear selected oper-
and and then incre-
ment the contents

of R5 by two.
Represented as:
BEFORE AFTER
ADDRESS SPACE REGISTERS ADDRESS SPACE REGISTERS
30000 R e [030000] 30000 000000 | rs [030002]
< uoo<

S
58

Chapter 4 — Addressing Modes

AUTOINCREMENT DEFERRED MODE MODE 3 @(Rn)+

In autoincrement deferred mode, the register contains a pointer to the
address of the operand. The + indicates that the pointer in Rn is in-
cremented by two (for both word and byte aperations) after the ad-
dress is located. Mode 2, autoincrement, is used only to access oper-
ands that are stored in consecutive locations. Mode 3, autoincrement
deferred, is used to access lists of operands stored anywhere in the
system, i.e., the operands do not have to reside in adjoining locations.
Mode 2 is used to step through a table of operands, and mode 3 is
used to step through a table of addresses that point to data.

Autoincrement Deferred Example

Symbolic Instruction Description
Octal Code
INC @(R2) + 005232 Contents of R2 are

used as the address
of the address of
the operand. The
operand is in-
creased by one,
contents of R2 are
incremented by
two.

Represented as:

BEFORE AFTER
ADDRESS SPACE REGISTER ADDRESS SPACE REGISTER
R2 010300 Rz [010302]
1010 000025 1010 000026
1012

001010 10300 001010

10302 175623

175623

AUTODECREMENT MODE MODE 4 —(Rn)

In autodecrement mode, the register contains an address that is auto-
matically decremented; the decremented address is used to locate an
operand. This mode is similar to autoincrement mode, but allows step-
ping through a list of words or bytes in reverse order. The address is
decremented by one for bytes, by two for words. However, R6 and R7
are always decremented by two.

59

Chapter 4 — Addressing Modes

To remind you that the register is decremented prior to use, the —
sign precedes the register name.

Autodecrement Mode Example

Symbolic Instruction Description
Octal Code
INCB —(R0) 105240 The contents of RO

are decremented by
one, then used as
the address of the
operand. The oper-
and byte is in-
creased by one.

Represented as:

BEFORE AFTER
ADDRESS SPACE REGISTERS ADDRESS SPACE REGISTER

RO 017777 RO 017776

P =
17776 000377
17776 000000

AUTODECREMENT DEFERRED MODE MODE 5 @ —(Rn)

In autodecrement deferred mode, the register contains a pointer to the
address of the operand. The pointer is first decremented by two (for
both word and byte operations), then the new pointer is used to re-
trieve an address stored outside the CPU’s general purpose registers.
This mode is similar to autoincrement deferred, but allows stepping
through a table of addresses in reverse order. Each address then
redirects the CPU to an operand. Note that the operands do not have
to reside in consecutive locations.

Autodecrement Deferred Mode Example

Symbolic Instruction Description
Octal Code
COM @ —(R0) 005150 The contents of RO

are decremented by
two and then used
as the address of
the address of the
operand. The oper-
and is one’s com-
plemented.

60

Chapter 4 — Addressing Modes

Represented as:

BEFORE AFTER
ADORESS SPACE REGISTER ADDRESS SPACE REGISTER

000 [012385 | ro[010776 165432 ro[ol077a |
1l R)

1072 | 010100 | 77| 010100 |
10776 | 10776
INDEX MODE MODE 6 X(Rn)

In index mode, a base address is added to an index word to produce
the effective address of an operand; the base address specifies the
starting location of table or list. The index word then represents the
address of an entry in the table or list relative to the starting (base)
address. The base address may be stored in a register. In this case,
the index word follows the current instruction. Or the locations of the
base address and index word may be reversed (index word in the regis-
ter, base address following the current instruction).

Index Mode Example

Symbolic Instruction Description
Octal Code

CLR 200(R4) 005064 The address of the
000200 operand is deter-

mined by adding
200 to the contents
of R4. The resulting
location is then

cleared.
Represented as:
BEFORE AFTER
ADDRESS SPACE REGISTER ADDRESS SPACE REGISTER

1020 005064 Ra [001000] 1020 005064 R4 001000 |

1022 000200 1022 000200

1024 /' +\ 1024

e e

1200 177777 1200 000000

INDEX DEFERRED MODE MODE 7 @X(Rn)

In index deferred mode, a base address is added to an index word. The
result is a pointer to an address, rather than the actual address. This

61

Chapter 4 — Addressing Modes

mode is similar to mode 6, except that it produces a pointer to an ad-
dress. The content of that address then redirects the CPU to the de-
sired operand. Mode 7 provides for the random access of operands us-
ing a table of operand addresses.

Index Deferred Mode Example

Symbolic Instruction Description
Octal Code
ADD @ 1000(R2),R1 067201 1000 and the con-
001000 tents of R2 are
summed to produce
the address of the

address of the
source operand, the
contents of which
are added to the
contents of R1. The
result is stored in
R1.

Represented as:

BEFORE v AFTER

ADDRESS SPACE REGISTER ADDRESS SPACE REGISTER
1020 067201 R1 [oon23a 1020 067201 R1 001236 |

1022 001000 //EA 000100 1022 001000 R2 000100

1024 1024

1050 000002 3 1050 000002
1100 001050 noo 001050

USE OF THE PC AS A GENERAL REGISTER

Register 7 is both a general purpose register and the program counter
on the PDP-11. When the CPU uses the PC to access a word from
memory, the PC is automatically incremented by two to contain the
address of the next word of the instruction to be executed or the ad-
dress of the next instruction to be executed. When the program uses
the PC to access byte data, the PC is still incremented by two.

The PC can be used with all of the PDP-11 addressing modes. There
are four modes in which the PC can provide advantages for handling
position-independent code and for handling unstructured data. These
modes refer to the PC and are termed immediate, absolute (or imme-
diate deferred), relative, and relative deferred.

62

Chapter 4 — Addressing Modes

PC IMMEDIATE MODE MODE2 #n

Immediate mode is equivalent to using the autoincrement mode with
the PC. It provides time improvements for accessing constant oper-
ands by including the constant in the memory location immediately
following the instruction word.

PC Immediate Mode Example

Symbolic Instruction Description
Octal Code

ADD #10,R0 062700 The value 10 is lo-
000010 cated in the second

word of the instruc-
tion and is added to
the contents of RO.
Just before this in-
struction is fetched
and executed, the
PC points to the
first word of the in-
struction. The pro-
cessor fetches the
first word and incre-
ments the PC by
two. The source op-
erand mode is 27
(autoincrement the
PC). Thus, the PC is
used as a pointer to
fetch the operand
(the second word of
the instruction) be-
fore being incre-
mented by two to
point to the next in-
struction.

Represented as:

BEFORE AFTER
ADDRESS SPACE REGISTER ADDRESS SPACE REGISTER

1020 062700 RO 000020 1020 062700 RO ﬁ 000030
1022 000010 R7 001020 1022 000010 R7 j 001024

1024 1024

63

Chapter 4 — Addressing Modes

PC ABSOLUTE MODE MODE 3 @#A
This mode is the equivalent of immediate deferred or autoincre-
ment deferred mode using the PC. The contents of the location fol-
lowing the instruction are taken as the address of the operand. Im-
mediate data are interpreted as an absolute address (i.e., an
address that remains constant no matter where in memory the as-
sembled instruction is executed).

PC Absolute Mode Example

Symbolic ; Instruction Description
Octal Code

CLR @#1100 005037 Clears the contents
001100 of location 1100.

Represented as:

BEFORE AFTER
ADDRESS SPACE REGISTER ADDRESS SPACE REGISTER

20 [005037 k7000020] 20 005037 r7[000024

22 001100 22 001100
24

100 77777 100 000000
1102 4 102

PC RELATIVE MODE MODE 6 X(PC)

orA
This mode is index mode 6 using the PC. The operand’s address is
calculated by adding the word that follows the instruction (called
an “offset”) to the updated contents of the PC.

PC + 2 directs the CPU to the offset that follows the instruction.
PC + 4 is summed with this offset to produce the effective address
of the operand. PC + 4 also represents the address of the next in-
struction in the program.

With the relative addressing mode, the address of the operand is
always determined with respect to the updated PC. Therefore, if the

entire program is relocated, the operand remains the same relative
distance away and may be accessed with changing the instruction.

The distance between the updated PC and the operand is called an
offset. After a program is assembled, this offset appears in the first
word location that follows the instruction. This mode is useful for
writing position-independent code. It is the default mode generated
by the MACRO assembler.

64

Chapter 4 — Addressing Modes

PC Relative Mode Example

Symbolic Instruction Description
Octal Code

INC A 005267 Toincrement A, the
000054 contents of the

memory location in
the second word of
the instruction are
added to the updat-
ed PC to produce
the address of A
(1100). The contents
of A are increased

: by one.
Represented as:
BEFORE AFTER
ADORESS SPACE REGISTER ADORESS SPACE REGISTER
1020 005267 R7 | 001020 | 1020 0005267 ®7 [001024]
1022 000054 1022 000054
1024 | 1024
1026 | 1026
et SN
rt 1100 000000 1100 000001

PC RELATIVE DEFERRED MODE MODE 7 @X(PC)or
, . @A

This mode is index deferred (mode 7), using the PC. A pointer to an
operand’s address is calculated by adding an offset (which follows
the instruction) to the updated PC.

This mode is similar to the relative mode, except that it involves
one additional level of addressing to obtain the operand. The sum
of the offset and updated PC (PC + 4) serves as a pointer to an ad-
dress. When the address is retrieved, it can be used to locate the
operand.

PC Relative Deferred Mode Example

Symbolic Instruction Description
Octal Code
CLR @A 005077 Adds the second
000020 word of the instruc-
65

Chapter 4 — Addressing Modes

Symbolic Instruction Description
Octal Code
tion to the updated
PC to produce
A—location
1044—the address
of the address of
the operand. Clears
operand.
Represented as:
BEFORE AFTER
ADDRESS SPACE REGISTER ADDRESS SPACE REGISTER
1020 005077 R7 001020] 1020[005077 x7 [ooi024]
1022 000020 1022 oooo~|01 ol
1024 -/ 1024

S

_otﬁo_o‘oo

10100 100001

1044 010100

10100 000000

SUMMARY OF ADDRESSING MODES

Basic Addressing Modes

Binary Mode Name

Code

000 0 Register

010 2 Autoincrement

100 4 Autodecrement

Symbolic Function

Rn Register contains
operand.

(Rn) + Register is used as
a pointer to
sequential data,
then incremented.
RO-R5 are incre-
mented by one for
byte and two for
word instruction.
R6-R7 are always
incremented by
two.

—(Rn) Register is decre-
mented and then
used as a pointer
to sequential data.

Chapter 4 — Addressing Modes

Basic Addressing Modes

Binary Mode Name
Code
110 6 Index

Indirect Addressing Modes

Binary Mode Name

Code

001 1 Register
Deferred

011 3 Autoincrement
Deferred

101 5 Autodecrement
Deferred

Symbolic

X(Rn)

Symbolic

@Rn or (Rn)

@(Rn) +

@ - (Rn)

Function

RO-R5 are decre-
mented by one for
byte and by two for
word instructions.
R6-R7 are always
decremented by
two.

Value X is added to
Rn to produce ad-
dress of operand.
Neither X nor Rn
is modified. X, the
index value, is al-
ways found in the
next memory loca-
tion and incre-
ments the PC.

Function

Register contains
the address of the
operand.

Register is first
used as a pointer
to a word contain-
ing the

address of the op-
erand, then incre-
mented (always by
two, even for byte
instructions).
Register is
decremented (al-
ways by two, even
for byte instruc-
tions) and then
used as a pointer
to a word contain-
ing the address of
the operand.

Chapter 4 — Addressing Modes

Indirect Addressing Modes

Binary Mode Name Symbolic Function

Code

111 7 Index @X(Rn) Value X (the index
Deferred is always found in

the next memory
location and incre-
ments the PC by
two)and Rn are
added and the sum
isused as a
pointer to a word
containing the
address of the op-
erand. Neither X
nor Rn is modi-
fied.

When used with the PC, four of these modes are renamed, as you

can see in the table below.

PC Register Addressing Modes

Binary Mode Name Symbolic Function

Code

010 2 _5335,8 #n Operand is con-
tained in the in-
struction.

011 3 Absolute @#A Absolute

address is con-
tained in the in-
struction.
Address of A,
relative to the in-
struction, is con-
tained in the in-
struction.
111 7 Relative @A Address of A,
Deferred relative to the in-
struction, is con-
tained in the in-
struction. Address
of the operand is
contained in A.

110 6 Relative A

68

s e

Chapter 4 — Addressing Modes

‘GRAPHIC SUMMARY OF PDP-11 ADDRESSING MODES

General Register Addressing Modes
R is a general register, 0 to 7.
(R) is the contents of that register.

Mode 0 Register OPRR R contains
operand.
ﬁzw;cQ_ozT\vﬁo:”\yZo]
Mode 1 Register , OPR (R) R contains
deferred address.

R
__zm;cn:o&lL ADDRESS OPERAND

Mode 2 Autoincre- OPR (R) + Contents of R
ment are used as ad-
dress, then incre-
ment R. Note
that R6 and R7
are always incre-

mented by two.
R

[nsTRUCTION}————#{ ADDRESS

OPERAND |

Mode 3 Autoincre- OPR @(R) + R contains ad-
ment dress of address,
deferred then increment

R by two.
R
[NsTRUCTION|———»{ ADDRESS ADDRESS |———={ OPERAND |

69

Chapter 4 — Addressing Modes

Mode 4 Autodecre-

ment

OPR —(R)

R

[INsTRUCTION|———f ADDRESS
t

Mode 5 Autodecre-
ment

deferred

OPR @ - (R)

Decrement R,
then R contains
address. Note
that R6 and R7
are always
decremented by
two.

OPERAND

Decrement R by
two, then R con-
tains address of
address.

Mode 6 Index OPR X(R)

R
ADDRESS

PC [INSTRUCTION

PC+2 X
Mode 7 Index OPR @X(R)
deferred
R

‘ OPERAND

R
ﬁzm;cn:oi ADDRESS I -2 j|4 ADDRESS T]v_r ovm;zu
[

R +Xis ad-
dress. X is con-
tained in the
word following
the instruction.

R + Xis address
of address. X is
contained in the
word following
the instruction.

ADDRESS

I OPERAND _

PC+2 X w

70

Chapter 4 — Addressing Modes

~ Program Counter Addressing Modes

Register = 7

Mode 2 Immediate OPR #n Literal operand n
is contained in
the word follow-
ing the instruc-
tion.

Mode 3 Absolute OPR @#A Address A is
contained in the
word following
the instruction.

PC+2 A T"_ OPERAND
Mode 6 Relative OPRA PC+4 + Xisad-
dress. PC+4is
; updated PC.
pc [instrucrion]
PC+2 I ‘» E
e [vext inste]
Mode 7 Relative OPR @A PC+4 + Xisad-
deferred dress of address.
PC +4 is updat-
ed PC.
PC+2
Anl ADDRESS i OPERAND |

CHAPTER 5
INSTRUCTION SET

The PDP-11 instruction set offers a wide selection of operations and
addressing modes. To save memory space and to simplify the im-
plementation of control and communications applications, the PDP-11
instructions allow byte and word addressing in both single- and dou-
ble-operand formats. By using the double-operand instructions, you
can perform several operations with a single instruction. For example,
ADD A,B adds the contents of location A to location B, storing the
result in location B. Traditional computers would implement this in-
struction this way:

LDA A
ADD B
STRB

The PDP-11 instruction set also contains a full set of conditional
branches that eliminate excessive use of jump instructions. PDP-11
instructions fall into one of seven categories:

e Single-Operand—the first part of the word, called the “opcode,”
specifies the operation; the second part provides information for
locating the operand.

e Double-Operand—the first part of the word specifies the operation
to be performed; the remaining two parts provide information for
locating two operands.

e Branch — the first part of the word specifies the operation to be
performed; the second part indicates where the action is to take
place in the program.

e Jump and Subroutine — these instructions have an opcode and
address part, and in the case of JSR, a register for linkage.

e Trap — these instructions contain an opcode only. In TRAP and

EMT, the low-order byte may be used for function dispatching.

Miscellaneous — HALT, WAIT, and Memory Management.

e Condition Code — these instructions set or clear the condition
codes.

SINGLE-OPERAND INSTRUCTIONS
Mnemonic Instruction

General
CLR(B) clear destination
COM(B) 1’s complement dst

73

Chapter 5 — Instruction Set

INC(B) increment dst

DEC(B) decrement dst

NEG(B) 2’s complement negate dst
NOP no operation

TST(B) test dst

TSTSET test dst, set low bit (MICRO/J-11 only)
WRTLCK read/lock dst, write/unlock RO into dst
{MICRO/J-11 only)

Shift & Rotate
ASR(B) arithmetic shift right
ASL(B) arithmetic shift left
ROR(B) rotate right
ROL(B) rotate left
SWAB swap bytes
Muitiple Precision
ADC(B) add carry
SBC(B) subtract carry
SXT sign extend

Instruction Format

15 6 5 3 2 0
— MODE — Rn
4 ' " n i . n " 1 . n
L ¥ Fo .. . ce e
4 T TR
OP CODE
DESTINATION FIELD L

* SPECIFIES DIRECT OR INDIRECT ADDRESS
** SPECIFIES HOW REGISTER WILL BE USED
*** SPECIFIES ONE OF 8 GENERAL PURPOSE REGISTERS

Figure 4-1 Single-Operand Instruction Format

The instruction format for single-operand instructions is:

e Bit 15 indicates word or byte operation.

e Bits 14-6 indicate the operation code, which specifies the operation
to be performed.

e Bits 5-0 indicate the 3-bit addressing mode field and the 3-bit gener-
al register field. These two fields are referred to as the destination
field.

DOUBLE-OPERAND INSTRUCTIONS
Mnemonic Instruction

General
MOV(B) move source to destination
ADD add source to destination
SuB subtract source from destination
74

Chapter 5 — Instruction Set

CMP(B) compare source to destination
ASH shift arithmetically
ASHC arithmetic shift combined
MUL multiply
DIV divide
Logical
BIT(B) bit test
BIC(B) bit clear
BIS(B) bit set
XOR exclusive OR

Instruction Format

—! . OP CODE % MODE ;_ Rn ﬂ MODE — Rn lﬁ

SOURCE FIELD b M
Umw:Z»:OZIm..O

* DIRECT/DEFERRED BIT FOR SOURCE AND DESTINATION ADDRESS
** SPECIFIES HOW SELECTED REGISTERS ARE TO BE USED
*** SPECIFIES A GENERAL REGISTER

Figure 4-2 Double-Operand Instruction Format

The format of most double-operand instructions, though similar to that

of single-operand instructions, has two fields for locating operands.

One field is called the source field, the other is called the destination

field. Each field is further divided into addressing mode and selected

register. Each field is completely independent. The mode and register

used by one field may be completely different than the mode and

register used by another field.

e Bit 15 indicates word or byte operation except when used with op-
code 6, in which case it indicates an ADD or SUBtract instruction.

e Bits 14-12 indicate the opcode, which specifies the operation to be
done.

e Bits 11-6 indicate the 3-bit addressing mode field and the 3-bit
general register field. These two fields are referred to as the source
field.

e Bits 5-0 indicate the 3-bit addressing mode field and the 3-bit gener-
al register field. These two fields are referred to as the destination
field.

75

Chapter 5 — Instruction Set

® Some double-operand instructions (ASH, ASHC, MUL, DIV) must
have the destination operand only in a register. Bits 15-9 specify the
opcode. Bits 8-6 specify the destination register. Bits 5-0 contain the
source field. XOR has a similar format, except that the source is in a
register specified by bits 8-6, and the destination field is specified by
bits 5-0.

Byte Instructions

Byte instructions are specified by setting bit 15. Thus, in the case of
the MOV instruction, bit 15 is 0; when bit 15 is set, the mnemonic is
MOVB. There are no byte operations for ADD and SUB, i.e., no ADDB
or SUBB.

BRANCH INSTRUCTIONS
Mnemonic Instruction

Branch
BR branch (unconditional)
BNE branch if not equal (to zero)
BEQ branch if equal (to zero)
BPL branch if plus
BMI branch if minus
BvVC branch if overflow is clear
BVS branch if overflow is set
BCC branch if carry is clear
BCS branch if carry is set
Signed Conditional Branch
BGE branch if greater than or
equal (to zero)
BLT branch if less than (zero)
BGT branch if greater than (zero)
BLE branch if less than or
equal (to zero)
SOB subtract one and branch (if not = 0)
Unsigned Conditional Branch
BHI branch if higher
BLOS branch if lower or same
BHIS branch if higher or same
BLO branch if lower

Instruction Format

® The high byte (bits 15-8) of the instruction is an opcode specifying
the conditions to be tested.

® The low byte (bits 7-0) of the instruction is the signed offset value in

76

Chapter 5 — Instruction Set

B |

Neanin,
OP CODE [’.I!L a

BYTE OFFSET

Figure 4-3 Branch Instruction Format

words that determines the new program location if the branch is
taken. Thus, program control can be transferred within a range of
—128 to +127 words from the updated PC.

JUMP AND SUBROUTINE INSTRUCTIONS
Mnemonic Instruction

JMP jump

JSR jump to subroutine

RTS return from subroutine

MARK facilitates stack clean-up
procedures

Instruction Format
JSR Format

15 9 8 6 5 3 2 9]

e

PRI . J\ V. S 5
S R { ﬁ

LINKAGE POINTER
DESTINATION FIELD

Figure 4-4 JSR Instruction Format

® Bits 15-9 are always octal 004, the opcode for JSR.

e Bits 8-6 specify the link register. Any general purpose register may
be used in the link, except R6 (SP).

e Bits 5-0 designate the destination field that consists of addressing
mode and general register fields. This specifies the starting address
of the subroutine.

e Register R7 (the Program Counter) is frequently used for both the
link and the destination. For example, you may use JSR R7, SUBR,
which is coded 004767. R7 is the only register that can be used for
both the link and destination, the other GPRs cannot. Thus, if the
link is R5, any register except R5 can be used for one destination
field.

77

Chapter 5 — Instruction Set

RTS Format
15 3 2 0
e
OP CODE U *
LINKAGE POINTER

Figure 4-5 RTS Instruction Format

The RTS (return from subroutine) instruction uses the link to return
control to the main program once the subroutine is finished.

e Bits 15-3 always contain octal 00020, which is the opcode for RTS.
® Bits 2-0 specify any one of the general purpose registers.

® The register specified by bits 2-0 must be the same register used as
the link between the JSR causing the jump and the RTS returning
control.

TRAPS AND INTERRUPTS
Mnemonic Instruction

EMT emulator trap

TRAP trap

BPT breakpoint trap

10T input/output trap

CSM call to supervisor mode
RTI return from interrupt
RTT return from interrupt

The three ways to leave a main program are:

® Software exit — the program specifies a jump to some subroutine

® Trap exit — internal hardware on a special instruction forces a jump
to an error handling routine

® Interrupt exit — external hardware forces a jump to an interrupt
service routine

In each case, a jump to another program occurs. Once the latter pro-
gram has been executed, control is returned to the proper pointin the
main program.

MISCELLANEOUS INSTRUCTIONS
Mnemonic Instruction

HALT halt

WAIT wait for interrupt

RESET reset UNIBUS

MTPD move to previous data space

78

||||j|||

Chapter 5 — Instruction Set

MTPI move to previous instruction space
MFPD move from previous data space

MFPI move from previous instruction space
MTPS move byte to processor status word
MFPS move byte from processor status word
MFPT move from processor type

Note that on the PDP-11/70, the four instructions for referencing the
previous address space (MTPD, MTPI, MFPD, MFPI) use the General
Register set indicated by PSW < 11> when they are executed.

CONDITION CODE OPERATION

Mnemonic Instruction
CLC,CLV, CLZ, CLN, CCC clear
SEC, SEV, SEZ, SEN, SCC set

The four condition code bits are:

e N, indicating a negative condition when set to 1
e Z, indicating a zero condition when set to 1

e V, indicating an overflow condition when set to 1
e C, indicating a carry condition when set to 1

These four bits are part of the processor status word (PS). The result
of any single-operand or double-operand instruction affects one or
more of the four condition code bits. A new set of condition codes is
usually created after execution of each instruction. Some condition
codes are not affected by the execution of certain instructions. The
CPU may be asked to check the condition codes after execution of an
instruction. The condition codes are used by the various instructions
to check software conditions.

Z bit — Whenever the CPU sees that the result of an instruction is zero,
it sets the Z bit. If the result is not zero, it clears the Z bit. There are a
number of ways of obtaining a zero result:

® Adding two numbers equal in magnitude but different in sign

e Comparing two numbers of equal value

e Using the CLR or BIC instruction

N bit — The CPU looks only at the sign bit of the result. If the sign bit is

set, indicating a negative value, the CPU sets the N bit. If the sign bit is
clear, indicating a positive value, then the CPU clears the N bit.

C bit — The CPU sets the C bit automatically when the result of an
instruction has caused a carry out of the most significant bit of the
result. Otherwise, the C bit is cleared. During rotate instructions (ROL
and ROR), the C bit forms a buffer between the most significant bit and
the least significant bit of the word. A carry of 1 sets the C bit while a

79

Chapter 5 — Instruction Set

carry of O clears-the C bit. However, there are exceptions. For
example:

e SUB and CMP set the C bit when there is no carry.

o |INC and DEC do not affect the C bit.

e COM always sets the C bit, TST always clears the C bit.

V bit — The V bitis set to indicate that an overflow condition exists. An
overflow means that the result of an instruction is too large to be
placed in the destination. The hardware uses one of two methods to
check for an overflow condition.

One way is for the CPU to test for a change of sign.

e When using single-operand instructions, such as INC, DEC, or NEG,
a change of sign indicates an overflow condition.

e When using double-operand instructions, such as ADD, SUB, or
CMP, in which both the source and destination have like signs, a
change of sign in the result indicates an overflow condition.

Another method used by the CPU is to test the N bit and C bit when
dealing with shift and rotate instructions.

e |f only the N bit is set, an overflow exists.

e |f only the C bitis set, an overflow exists.

e |f both the N and C bits are set, there is no overflow condition.

More than one condition code can be set by a particular instruction.

For example, both a carry and an overflow condition may exist after
instruction execution.

CONDITION CODE OPERATORS

s s e el [

Figure 4-6 Condition Code Operators' Format

Instruction Format
The format of the condition code operators is:

® Bits 15-5 — the opcode .

e Bit 4 — the “operator” which indicates set or clear with the values 1
and 0 respectively. If set, any selected bit is set; if clear, any selected
bitis cleared.

® Bits 3-0 — the mask field. Each of these bits corresponds to one of
the four condition code bits. When one of these bits is set, then the

80

Chapter 5 — Instruction Set

corresponding condition code bit is set or cleared depending on the
state of the “operator” (bit 4).

EXAMPLES
The following examples and explanations illustrate the use of the vari-
ous types of instructions in a program.

Single-Operand Instruction Example

This routine uses a tally to control a loop, which clears out a specific
block of memory. The routine has been set up to clear 30, byte loca-
tions beginning at memory address 600.

INIT: MOV #600,R0
MOV #30,R1

LOOFP: CLRB (R0)+
DEC R1
BNE LOOP
HALT

Program Description
e The CLRB (R0O)+ instruction clears the content of the location speci-
fied by RO and increments RO.

® RO is the pointer.

e Because the autoincrement addressing mode is used, the pointer
automatically moves to the next memdry location after execution of
the CLRB instruction.

e Register R1 indicates the number of locations to be cleared and is,
therefore, a counter. Counting is performed by the DEC R1 instruc-
tion. Each time a location is cleared, it is counted by decrementing
R1.

e The Branch if Not Zero, BNE, instruction checks for done. If the
counter is not zero, the program branches back to clear another
location. If the counter is zero, indicating done, then the program
halts.

Double-Operand Instruction Example

This routine moves characters to be printed from location 600 into a

* print buffer area in memory.

INIT: MOV #600, RO ;set up source address
MOV #prtbuf, R1 ;set up destination address
MOV #76, R2 ;set up loop count

START: MOVB (R0)+, (R1)+ ;move one character
;and increment
;both source and

81

Chapter 5 — Instruction Set

. ;destination addresses
omomm aooaam:»oocigo:m

BNE START ;loop back if
HALT :decremented counter is not

;equal to zero

Program Description

MOV is the instruction normally used to set up the initial conditions.
Here, the first MOV places the starting address (600) into RO, which
will be used as a pointer. The second MOV places the starting
address of the print buffer into R1. The third MOV sets up R2 as a
counter by loading the desired number of locations (76) to be print-
ed.

The MOVB instruction moves a byte of data to the printer buffer. The
data come from the location specified by R0O. The pointers RO and
R1 are then incremented to point to the next sequential location.

The counter (R2) is then decremented to indicate one byte has been
transferred.

The program then checks the loops for done with the BNE instruc-
tion. If the counter has not reached zero, indicating more transfers
must take place, then the BNE causes a branch back to START and
the program continues.

When the counter (R2) reaches zero, indicating all data have been
transferred, the branch does not occur and the program halts.

Branch Instruction Example

NOTE
Branch instruction offsets are limited to the range of
+177, to —2005 words.

A payroll program has set up a series of words to identify each em-
ployee by his badge number. The high byte of the word contains the
employee’s badge number, the low byte contains an octal number
ranging from 0 to 13 which represents his salary. These numbers
represent steps within three wage classes to identify which employees
are paid weekly, monthly, or quarterly. It is time to make out weekly
paychecks. Unfortunately, employee information has been stored in a
random order. The problem is to extract the names of only those
employees who receive a weekly paycheck. Employee payroll num-
bers are assigned as follows: 0 to 3 — Wage Class | (weekly), 410 7 —
Wage Class Il (monthly), 10 to 13 — Wage Class lll (quarterly).

82

Chapter 5 — Instruction Set

600 is the starting address of memory block containing the employee
payroll information. 1264 is the final address of this data area. The
following program searches through the data area and finds all
numbers representing Wage Class |, and, each time an appropriate
number is found, stores the employee’s badge number (just the high
byte) on a Last-in/First-out stack which begins atlocation 4000.

INIT: MOV #600, RO
MOV #4000, R1
START: CMPB(R0)+,#3
BHI CONT
STACK: MOVB (R0),—(R1)
CONT: INC RO

CMP #1264, RO

BHIS START

Program Description

RO becomes the address pointer, R1 the stack pointer.

Compare the contents of the first low byte with the number 3andgo
to the first high byte.

If the number is more than 3, branch to continue.

If no branch occurs, it indicates that the number is 3 or less. There-
fore, move the high byte containing the employee’s number onto the
stack as indicated by stack pointer R1.

RO is advanced to the next low byte.

If the last address has not been examined (1264), this instruction
produces a result equal to or greater than zero.

If the result is equal to or greater than zero, examine the next memo-
ry location.

INSTRUCTION SET
The PDP-11 instruction set is presented in the following section. For
ease of reference, the instructions are listed alphabetically.

SPECIAL SYMBOLS
You will find that a number of special symbols are used to describe

83

Chapter 5 — Instruction Set Chapter 5 — Instryction Set
certain features of individual instructions. The commonly used sym- SUMMARY OF PDP-11 INSTRUCTION SET
bols are explained below.
L Basic PDP-11 Instruction Set
Symbol Meaning ADC BIT COM ROL
MN Maintenance instruction ADCB BITB COMB ROLB
SO Single-operand instruction ADD BLE DEC ROR
DO Double-operand instruction ASL BLO DECB RORB
PC Program control instruction ASLB BLOS EMT RTI
MS Miscellaneous instruction ASR BLT HALT RTS
CcC Condition Code ASRB BMI INC RTT
(x) Contents of memory location whose address is x BCC BNE INCB SBC
src Source address BCS BPL 10T SBCB
dst Destination address BEQ BPT JMP mOO_ mmz.
tmp Contents of temporary internal register SEZ,
: SEV, SEC

- Becomes, or moves into. For example, (dst) < (src)

means that the source becomes the destination or : BGE BR JSR SOB

that the source moves into the destination location. BGT BVC MARK SUB
(SP)+ Popped mﬂ removed from the hardware stack , BHI BVS MOV SXT
—(SP) Pushed or added to the hardware stack BHIS CLR MOVB SWAB
4 Lbyicai AliE ., BIC CLRB NEG TRAP
v Logical inclusive OR (either one or both) BICB CCC, CLN, NEGBB TST
v Logical exclusive OR (either one, but not both) : CLz,

4 LV,
A~ Logical NOT 1 k& LY
RegorR Contents of register e o et il
E P ET

Rv1 Contents of register R if an odd-numbered register is P CMPE PEs 29N

specified. Contents of the register following Rif R is : : 3 WAIT

an even-numbered register : The basic PDP-11 instructions are standard on:
R, Rv1 32-bit quantity obtained by concatenating R and Rv1 i lol o

e MICRO/J-11
B Byte e | SI-11/2
M.P.1. Most Positive Integer—077777 (word) or 177 (byte) e FALCON SBC-11/21 (except for MARK instruction)
M.N.I. Most Negative Integer—100000 (word) or 200 (byte) e MICRO/PDP-11
NOTE e PDP-11/23 PLUS
Condition code bits are considered to be cleared s POF1I2e
unless they are specifically listed as set. e PDP-11/44

84 85

=

Chapter 5 — Instruction Set

The PDP-11 compatibility mode on VAX-11 implements all basic PDP-
11 instructions except: MARK, RESET, TRAP, WAIT, BPT, EMT, IOT,
and HALT.

CSM
Available on MICRO/J-11 and PDP-11/44 only.

Extended Integer Instructions (EIS)
ASH

ASHC

DIv

MUL

EIS is standard on:

» MICRO/PDP-11

e PDP-11/23 PLUS

e PDP-11/24

e PDP-11/44

e VAX-11 compatibility mode

EIS is also available as an option on the LSI-11/2.

MFPD, MFPI, MTPD, MTPI
Available on the MICRO/J-11, LSI-11/23, MICRO/PDP-11, PDP-11/23-
PLUS, PDP-11/24, PDP-11/44, and VAX-11 compatibility mode.

MFPS, MTPS
Available on the MICRO/T-11, MICRO/J-11, LSI-11/2, FALCON SBC-11/
21, LSI-11/23, MICRO/PDP-11, PDP-11/23-PLUS, and PDP-11/24.

MFPT ;
Available on the MICRO/T-11, MICRO/J-11, FALCON SBC-11/21, LSI-
11/23, MICRO/PDP-11, PDP-11/23-PLUS, PDP-11/24, and PDP-11/44.

SPL
Available on MICRO/J-11 and PDP-11/44 only.

TSTSET, WRTLCK
Available on MICRO/J-11 only.

86

Chapter 5 — Instruction Set

Description
nation are lost. The contents of the

Adds the contents of the C bit into
Adds the source operand to the
destination operand and stores the
result at the destination address.
The original contents of the desti-
source are not affected. 2's com-
plement addition is performed.

the destination.

0
0

instruction execu-
and C was 1, prior to
instruction execu-
tion.

arithmetic overflow
as aresult of the op-
eration; that is, both
operands were of
the same sign and
the result is of the
opposite sign.

tion.
C: set if (dst) was —1

and C was 1, prior to

Condition Codes
V: set if (dst) was M.P.I.

N: setifresult < 0

Z: setif result
N: setifresult <0

Z: setif result
V: setif thereis

Table 5-1 PDP-11 Instruction Set
Operation

(dst) < (dst)+C
(dst) < (src) +

(dst)

OPCode

0055DD
1055DD
06SSDD

Type

SO
DO

Mnemonic/
Instruction

Add Carry

ADC
ADCB
ADD
Add

Table 4-1 PDP-11 Instruction Set, cont.
Mnemonic/
Instruction Type OPCode Operation Condition Codes Description
C: setifthereis acarry
from the most sig-
nificant bit of the Q
result. 3
¢ 2
ASH DO 072RSS R <« R shifted N: setif result <0 The contents of the register are T
¥ Arithmetic arithmetically NN Z: setif result = 0 shifted right or left the number of =5
Shift places torightor V: setif sign of register times specified by the shift count 2
left where NN = changed during (i.e., bits <5:0> of the source op- §
(src) <5:0> shift. Cleared if NN erand). The shift countis taken as §'
=0. the low order 6 bits of the source @
C: loaded from last bit operand. This number ranges from ™
shifted out of regis- —32to +31. Negative is a right shift
ter. Cleared if NN = and positive is a left shift.
0.
ASHC DO 073RSS tmp <R, Rv1 N: setif result <0 The contents of the specified regis-
Arithmetic tmp < tmp shift- Z: setifresult =0 ter R and the register Rv1 are treat-
Shift ed NN bits V: set if sign bit ed as a single 32-bit operand, and
Combined R« tmp<31: changes during the are shifted by the number of bits
16> shift. specified by the count field (bits
Rv1 «tmp<15: C: loaded with high- <5:0> of the source operand). The
0> order bit when left registers are replaced by the re-
The double word shift; loaded with sult. First, bits <31:16> of the re-
R,Rv1 is shifted low-order bit when sult are stored in register R. Then,
NN places to the right shift (loaded bits <15:0> of the result are stored
right or left, with the last bit shift- in register Rv1. The count ranges
where NN = (src) ed out of the 32-bit from —32 to +31. A negative count
<5:0> operand). signifies a right shift. A positive
count signifies a left shift. A zero Q
countimplies no shift, but condi- ‘§’_
tion codes are affected. Condition <
codes are always set on the 32-bit T
% result. 5
Note: 1) The sign bit of the register I
Ris replicated in shifts to the right. 2
The least significant bit is filled with S
zero in shifts to the left. The C bit &
stores the last bit shifted out. 2) In-
teger overfiow occurs on a left shift
if any bit shifted into the sign posi-
tion differs from the initial sign of
the register.
ASL SO 0063DD (dst) < (dst) N: set if high-order bit Shifts all bits of the destination left
ASLB SO 1063DD shifted one place of the result is set one place. The low-order bit is
Arithmetic to the left (result < 0) loaded with a 0. The C bit of the

Table 5-1 PDP-11 Instruction Set, continued

Mnemonic/
Instruction Type OPCode Operation Condition Codes Description
Shift Left Z: setiftheresult =0 status word is loaded from the
V: loaded with the ex- high-order bit of the destination.
clusive OR of the N ASL performs a signed multiplica-
bit and C bit (as set tion of the destination by 2 with &
by the completion of overflow indication. For example, =
the shift operation). —1 shifted left yields —2, +2 shift- %
C: loaded with the ed left yields +4, and —3 shifted o
high-order bit of the left yields —6. |
destination. g
S
ASR SO 0062DD (dst) < (dst) N: setif the high-order Shifts all bits of the destination %,
ASRB SO 1062DD shifted one place bit of the resultis set right one place. The high-order bit 3
Arithmetic to the right (result < 0) is replicated. The C bit is loaded &
Shift Right Z: setiftheresult =0 from the low-order bit of the desti-
V: loaded from the ex- nation. ASR performs signed divi-
clusive OR of the N sion of the destination by 2, round-
bit and C bit (as set ed to minus infinity. —1 shifted
by the completion of right remains —1, +5 shifted right
the shift operation). yields +2, —5 shifted right yields
C: loaded from low- —3.
order bit of the des-
tination
BCC PC 103000 PC<«PC + N: unaffected Tests the state of the C bit and
Branch if PLUS 8- (2 X offset) if Z: unaffected causes a branch if C is clear.
Carry Clear bitoffset C=0 V: unaffected
C: unaffected
BCS PC 103400 PC <« PC + N: unaffected Tests the state of the C bit and
Branch if PLUS 8- (2 X offset) if Z: unaffected causes a branch if C is set. Used to
Carry Set bitoffset C =1 V: unaffected test for a carry in the result of a
C: unaffected previous operation. -
=
BEQ PC 001400 PC < PC + N: unaffected Tests the state of the Z bit and §
Branch if PLUS 8- (2 X offset) if Z: unaffected causes a branch if Z is set. For ex- ?;'1
Equal (to bit offset Z =1 V: unaffected ample, it is used to test equality fol- |
zero) C: unaffected lowing a CMP operation, and to 5
test that no bits set in the destina- §
tion were also setin the source fol-
lowing a BIT operation, and, gener- S
ally, to test that the result of the @
previous operation was 0. 5
BGE PC 002000 PC < PC + N: unaffected Causes a branch if N and V are ei-
Branch if PLUS 8- (2 X offset) if Z: unaffected ther both clear or both set. BGE is
Greater bitoffset N¥V =0 V: unaffected the complementary operation to
than C: unaffected BLT. Thus, BGE always causes a
or Equal branch when it follows an opera-

tion that caused addition of two
positive numbers. BGE also
causes a branch in a 0 result.

€6

Table 5-1 PDP-11 Instruction Set, continued

Mnemonic/
Instruction Type OPCode Operation Condition Codes Description
BGT PC 003000 PC < PC + N: unaffected Causes a branch if Zis clear and N
Branch if PLUS 8- (2 X offset) if Z: unaffected equals V. Thus, BGT never branch-
Greater bit offset Zv(NvV)=0 V: unaffected es following an operation thatadd-
than C: unaffected ed two negative numbers, even if é’
overflow occurred. In particular, T
BGT never causes a branch if itfol- o
3 lows a CMP instruction operating 1\
i on a negative source and a positive ;
destination (even if overflow oc- g
curred). Further, BGT always 3
causes a branch when it follows a 3)
CMP instruction operating on a o
positive source and negative desti-
nation. BGT does not cause a
branch if the result of the previous
operation was 0 (without overflow).
BHI PC 101000 PC<«PC+ N: unaffected Causes a branch if the previous
Branch if PLUS 8- (2 X offset) if Z: unaffected operation causes neither a carry
Higher bitoffset C=0andZ=0 V: unaffected nor a 0 result. This will happen in
C: unaffected comparision (CMP) operations as
long as the source has a higher un-
signed value than the destination.
BHIS PC 103000 PC < PC + N: unaffected Tests the state of the C bit and
Branch if PLUS 8- (2 X offset) if Z: unaffected causes a branch if C is cleared.
Higher bitoffset C =0 V: unaffected
than or C: unaffected
Same
BIC DO 04SSDD (dst) « ~ (src) A N: set if high-order bit Clears each bit in the destination o
BICB 14SSDD - (dst) of result set that corresponds to a set bit in the .n:)
Bit Clear Z: setifresult =0 source. The original contents of the)
V: cleared destination are lost. The contents o
C: unaffected of the source are unaffected. l\
»
BIS DO 05SSDD (dst) « N: set if high-order bit Performs inclusive OR operation §
BISB 156SSDD (src)v(dst) of result set between the source and destina- 5
Bit Set Z: setifresult =0 tion operands and leaves the result 3)
V: cleared at the destination address, i.e., ot
C: unaffected corresponding bits set in the
source are set in the destination.
The contents of the destination are
lost.
BIT DO 03SSDD (dst) A (src) N: set if high-order bit Performs logical AND comparison
BITB 13SSDD of result set of the source and destination oper-
Bit Test Z: setifresult =0 ands and modifies Condition
V: cleared Codes accordingly. Neither the

Table 5-1 PDP-11 Instruction Set, continued

Mnemonic/
Instruction Type OPCode Operation Condition Codes Description
C: unaffected source nor destination operands
are affected. The BIT instruction
may be used to test whether any of
the corresponding bits thatareset o
in the destination are clear in the .g
7 source. 3
[$;]
¥ BLE PC 003400 PC < PC + N: unaffected Causes abranchif Zissetorif N L\
Branch if PLUS 8- (2 X offset) if Z: unaffected does not equal V. Thus, BLE al- 2
Less bit offset 2Zv(NvV) =1 V: unaffected ways branches following an opera- 5
than or C: unaffected tion that added two negative num- ¢
Equal to bers, even if overflow occurred. In ®
particular, BLE always causes a =
branch if it follows a CMP instruc-
tion operating on a negative source
and a positive destination (even if
overflow occurred). Further, BLE
never causes a branch when it fol-
lows a CMP instruction operating
on a positive source and negative
destination. BLE always causes a
it Bl
branch if the result of the previous
operation was 0.
BLO PC 103400 PC«PC + N: unaffected Tests the state of the C bit and
Branch if PLUS 8- (2 X offset) if Z: unaffected causes a branch if C is set. Used to
Lower bit offset C =1 V: unaffected test for a carry in the result of a
C: unaffected previous operation.
BLOS PC 101400 PC < PC + N: unaffected Causes a branch if the previous
Branch if PLUS 8- (2 X offset) if Z: unaffected operation caused either a carry or Q
Lower bit offset CvZ =1 V: unaffected a zero result. BLOS is the com- ﬁ
or Same C: unaffected plementary operation to BHI. The <
branch occurs in comparison op- T‘
& erations as long as the source is =
equal to or has a lower unsigned 2
value than the destination. s
BLT PC 002400 PC < PC + N: unaffected Causes a branch if the exclusive S
Branch if PLUS 8- (2 X offset) Z: unaffected OR of the N and V bits is 1. Thus, gf
Less Than bit offset IfNVV =1 V: unaffected BLT always branches following an
C: unaffected operation that added two negative

numbers, even if overflow oc-
curred. In particular, BLT always
causes a branch if it follows a CMP
instruction operating on a negative
source and a positive destination
(even if overflow occurred). Fur-

96

A

Table 5-1 PDP-11 Instruction Set, continued

Mnemonic/
Instruction Type OPCode Operation Condition Codes Description
ther, BLT never causes a branch
when if follows a CMP instruction
operating on a positive source and
negative destination. BLT does not
- cause a branch if the result of the
¢ previous operation was 0 (without
1 o overflow).
awatd e !132%4802- ZCX:fi)sC:eJif ;J unaffected Tests the state of the N bit and
Minis i : unaffected causes a branch if N is set. Used to
V: unaffected test the sign (most significant bit)
C: unaffected of the result of the previous opera-
SHE 2 tion.
et C g(zbosog_ F;Cx‘;:; ;;if g unaffected Tests the state of the Z bit and
Not Equal blboHest 2 5 .' unaffected causes a branch if the Z bit is clear.
V: unaffected BNE is the complementary opera-
C: unaffected tion to BEQ. Itis used to test
inequality following a CMP, to test
that some bits set in the destination
were also set in the source, follow-
ing a BIT, and generally, to test that
b SRaRE e L
the result of the previous operation
was not 0.
BPL PC 100000 PC < PC + N: unaffected Tests the state of the N bit and
Branch if PLUS 8- (2 X offset) if Z: unaffected causes a branch if Nis clear. BPL
Plus bit offset N =0 V: unaffected is the complementary operation of
C: unaffected BMI.
BPT PC 000003 —(SP) < PS N: loaded from trap Performs a trap sequence with a
Breakpoint —(SP) <« PC vector trap vector address of 14. Used to
Trap PC < (14) Z: loaded from trap call debugging aids. The user is
PS <« (16) vector cautioned against employing code
V: loaded from trap 000003 in programs run under
vector these debugging aids. No informa-
C: loaded from trap tion is transmitted in the low byte.
vector
BR PC 000400 PC < PC + N: unaffected Provides a way of transferring pro-
Branch PLUS 8- (2 X offset) Z: unaffected gram control within a range of
(Uncondi- bit offset V: unaffected —128 to +127 words with a one-
tional) C: unaffected word instruction. An unconditional
branch.
BVC PC 102000 PC«PC + N: unaffected Tests the state of the V bit and
Branchif V PLUS 8- (2 X offset) if Z: unaffected causes a branch if the V bit is clear.
bit bitoffset V=0 V: unaffected BVC is the complementary opera-
Clear C: unaffected tion to BVS.

Q
i~y
Q
kS|
=
)
o,
5
=
3
«
=
3
<
S
=
)
3
%)
)
pL:4

185 uononnsul — G 1aydeyd

Table 5-1 PDP-11 Instruction Set, continued

Mnemonic/

Instruction Type OPCode Operation Condition Codes Description
BVS PC 102400 PC «PC + N: unaffected Tests the state of V bit and causes
Branch if PLUS 8- (2 X offset) if Z: unaffected a branchifthe V bitis set. BVS'is
V bit Set bit offset V =1 V: unaffected used to detect arithmetic overflow
C: unaffected in the previous operation.
CLR SO 0050DD (dst) <0 N: cleared Contents of specified destination
oL CLRB 1050DD Z: set are replaced with zeros.
Clear V: cleared
C: cleared
C cC 000240 Clear condition code bits. Selectable combinations of these bits may be
Clear PLUS 4- cleared together. Condition code bits corresponding to bits in the condition
Selected bitmask code operator (bits 0-3) are modified. Clears the bit specified by the mask; i.e.,
Condition bit0, 1,2,0r 3. BitdisaO0.
Code Operation:
Bits PSW <3:0> < PSW <3:0> A[~mask <3:0>]
CCC CcC 00257 N,Z,V,C<0
Clear all
Condition

18S uononnsu| — ¢ saydeyn

Code

Bits
CLC CcC 000241 C<«0
Clear C
CLN CC 000250 N<0
Clear N
CLV CcC 000242 V<0
Clear V
CLz CC 000244 Z<0
8 Clearz
CMP DO 02SSDD (src) — (dst) N: setif result <0
CMPB 12SSDD [in detail Z: setifresult =0
Compare (src) + ~ (dst) + V: setifthereis
1] arithmetic overflow;

i.e., operands of op-
posite signs and the
sign of the destina-
tion is the same as
the sign of the re-
sult.

C: setif there is a bor-

Compares the source and destina-
tion operands and sets the condi-
tion codes, which may then be
used for arithmetic and logical
conditional branches. Both oper-
ands are unaffected. The only ac-
tion is to set the condition codes.
The comparison is customarily fol-
lowed by a conditional branch in-
struction. Note that unlike the
subtract instruction, the order of

18S vononnsul — G i8)deyd

Table 5-1 PDP-11 Instruction Set, continued

Mnemonic/
Instruction Type OPCode Operation Condition Codes Description
row into the most operation is (src) —(dst), not (dst)
significant bit, i.e., if — (src).
(src)+~(dst)+1 was
less than 216 0
5
gs]
COM SO 0051DD (dst) « ~ (dst) ~N: set if most signifi- Replaces the contents of the desti-)
coMB 1051DD cantbitofresult =1 nation address by their logical o
é Comple- Z: setifresult =0 complements (each bit equal to 0 l\
ment V: cleared set and each bit equal to 1 a
C: set cleared). EEZ
o
CSM PC 0070DD IfMMR3<3> = N: unaffected CSM may be executed in User or ?,,
Call to 1and current Z: unaffected Supervisor Mode, butis anillegal 2
Supervisor mode # Kernel V: unaffected instruction in Kernel mode. CSM
Mode then: C: unaffected copies the current stack pointer (SP)
begin to the Supervisor Mode switch-
Supervisor SP « es to Supervisor Mode, stacks
current mode three words on the Supervisor
SP: stack, (the PSW with the Condition
temp <15:4> <« Codes cleared, the PC, and the ar-
PSW <15:4>; gument word addressed by the op-
" T ”
temp <3:0> «0; erand), and sets the PC to the con-
PSW <13:12> <« tents of location 10 (in Supervisor
PSW <15:14>; space). The called program in
PSW <15:14> « Supervisor space may return to the
01; calling program by popping the ar-
PSW <4> «0; gument word from the stack and
—(SP) < temp; executing RTI. On return, the
—(SP) < PC; Condition Codes are determined
—(SP) <« (dst); by the PSW word on the stack. Q
PC <« (10); Hence, the called program in Su- §
end; pervisor space may control the e
elsetrapto 10in Condition Code values following T‘
= Kernel mode; return. =
o @
DEC SO 0053DD (dst) < (dst) — 1 N: setifresult < 0 Subtracts 1 from the contents of §
DECB 1053DD Z: setifresult =0 the destination. g'
Decrement V: setif (dst) was @
M.N.L i
C: unaffected
DIV DO 071RSS R,Rv1 « N: set if quotient < 0
Divide R,Rv1/(src) (unspecified if V =

1)

Z: setif quotient =0
(unspecified if V =
1)

Table 5-1 PDP-11 Instruction Set, continued

Mnemonic/
Instruction Type OPCode Operation Condition Codes Description
V: setif (src) = 0 or if
quotient cannot be
represented as a
16-bit 2's comple- Q
ment number. R, 2
Rv1 are unpredicta- 3
bleif Vissetand C e
is clear. L
C: set if divide by 0 is 2
attempted §
§.
EMT PC 104000 —(SP) < PS N: loaded from trap All operation codes from 104000to
Emulator to —(SP) < PC vector 104377 are EMT instructions and 2
Trap 104377 PC «(30) Z: loaded from trap may be used to transmit informa-
PS «(32) vector tion to the emulating routine (e.g.,
V: loaded from trap function to be performed). The trap
vector vector for EMT is at address 30.
C: loaded from trap The new PC is taken from the word
vector at address 30; the new central
processor status word (PS) is tak-
en from the word at address 32.
Caution: EMT is used frequently
by DIGITAL system software and is
therefore not recommended for
general use.
HALT MS 000000 N: unaffected Causes the processor operation to
Z: unaffected cease. The console is given control
V: unaffected of the processor. The console data
C: unaffected lights display the contents of the
PC (which is the address of the 2
HALT instruction plus 2). Transfers T
on the UNIBUS are terminated im- i
mediately. Pressing the continue |
key on the console causes proces- 5
sor operation to resume. =
INC SO 0052DD (dst) <« (dst) + 1 N: setif result <0 Adds 1 to the contents of the desti- %
INCB 1052DD Z: setifresult =0 nation. o
Increment V: setif (dst) was M.P.1. 1)
C: unaffected
10T PC 000004 —(SP) «<PS N: loaded from trap Performs a trap sequence with a
1/0 Trap —(SP) < PC vector trap vector address of 20. Used to
PC «(20) Z: loaded from trap call the 1/0 executive routine IOX in
PS «(22) vector the paper tape software system
V: loaded from trap and for error reporting in the disk

vector

operating system. No information

Table 5-1 PDP-11 Instruction Set, continued

Mnemonic/

Instruction Type OPCode Operation Condition Codes Description

C: loaded from trap is transmitted in the low byte.
vector

JMP PC 0001DD PC «dst

: unaffected JMP i i -
et provides more flexible pro

. unaffected gram branching than provided with

: unaffected the branch instruction. It is not lim-

: unaffected ited to +177, and —200, as are
branch instructions. JMP does
generate a second word, which
makes it slower than branch in-
structions. Control may be trans-
ferred to any location in memory
(no range limitation) and can be
accomplished with the full flexibili-
ty of the addressing modes with
the exception of register mode 0.
Execution of a jump with mode 0
will cause an illegal instruction
condition and a trap through loca-
tion 4. (Program control cannot be
transferred to a register.) Register

O<NZ

}8s uononnsul — g 183deyn

S et sl

deferred mode is legal and will
cause program control to be trans-
ferred to the address held in the
specified register. Note that
Instructions are word data and
therefore must be fetched from
an even numbered address. A
boundary error trap condition will
result when the processor
attempts to fetch an instruction
from an odd address.

: unaffected In execution of the JSR, the old

: unaffected contents of the specified register

Subroutine nal processor : unaffected (the linkage pointer) are automati-
register) : unaffected cally pushed onto the R6 stack and
¥(SP) «reg new linkage information is placed
(push reg con- in the register. Thus, subroutines
tents onto proc- nested within subroutines to any
essor stack) depth may all be called with the
reg < PC (PC same linkage register. There is no
holds the loca- need either to plan the maximum
tion following : depth at which any particular sub-
JSR; this address routine will be called or to include
now putin reg) instructions in each routine to save
PC «tmp (PC and restore the linkage pointer.
now points to Further, since all linkages are

JSR PC 004RDD (tmp) <« (dst)
S Jumpto (tmp is an inter-

O<NZ

18S uononysu] — G s8)deyd

901

201

Table 5-1 PDP-11 Instruction Set, continued

Mnemonic/
Instruction Type OPCode Operation Condition Codes

Description

subroutine ad-

saved in a re-entrant manner on
the R6 stack, execution of a sub-
routine may be interrupted, and
the same subroutine re-entered
and executed by an interrupt ser-
vice routine. Execution of the initial
subroutine can then be resumed
when other requests are satisfied.
This process (called nesting) can
proceed to any level.

JSR PC, dst is a special case of the
PDP-11 subroutine call suitable for
subroutine calls that transmit par-
ameters through the general pur-
pose registers. JSR, with the PC as
the linkage register, saves the use
of an extra register.

Note: If the register specified in the
first operand register is autoincre-
mented or autodecremented in the
second operand (dst) evaluation,

18S uononnsu] — g Jaydeyd

dress)
-~ DTN s i .
MARK PC 0064NN SP <« PC+2X N: unaffected
NN Z: unaffected
PC «<R5 V: unaffected
R5 « (SP)+ C: unaffected
NN = number of
parameters
MFPD MS 1065SS tmp <« (src) N: set if the source < 0
Move From 0065SS —(SP) «<tmp Z: setifthe source =0
Previous V: cleared
Data C: unaffected
space
MFPI
Move From
Previous
Instruc-
tion

space

the modified register contact is
pushed on SP. For example, JSR
R5,@(R5)+ will cause the modified
value of R5 to be pushed to SP.

Used as part of the standard PDP-
11 subroutine return convention.
MARK facilitates the stack clean-
up procedures involved in subrou-
tine exit. Assembler format is:
MARK N

Pushes a word onto the current R6
stack from an address in previous
space determined by PS<13:12>.
The source address is computed
using the current registers and
memory map. When MFPI is exe-
cuted and both previous mode and
current mode are User, the instruc-
tion functions as though it were
MFPD.

18s uononysu| — G 18)deyd

Tabie 5-1 PDP-11 Instruction Set, continued

Mnemonic/
Instruction

Operation

Condition Codes

Description

PDP-
11/03, and
PDP-
11/04)

MFPS
i Move Byte
2 from PSW

co

MFPT
Move From
Processor

(dst) < PS<7:0>
dst lower 8 bits

RO<7:0> «
processor model
code

R0<15:8> <«

setif PSbhit7 =1
setif PS <7:0> =0
cleared

“N:
Z;
V:
C: not affected

: unaffected
. unaffected
: unaffected
: unaffected

O<NZ

The 8-bit contents of the PS are
moved to the effective destination.
If destination is mode 0, PS bit 7 is
sign extended through the upper
byte of the register. The destina-
tion operand is treated as a byte
address.

No source operands are used. The
MFPT instructions returns in the
low byte of RO a processor model
code (1 on the PDP-11/44, 3 on the

188 uononsu| — G saydeys

MOV
MOVB
Move

MTPD
Move To

Type OPCode
MS 1067DD
MS 000007
DO 01SSDD

11SSDD
MS 1066DD
0066DD

processor sub-
code

(dst) < (src)

tmp < SP+
(dst) < tmp

: setif (src) <0
: setif(src) =0
: cleared

: unaffected

O<NZ

N: set if the source < 0
Z: setifthesource =0

PDP-11/24). The high byte of RO is
loaded with a processor-specific
subcode, (currently 0 on the PDP-
11/24 and PDP-11/44). The condi-
tion codes are not affected. The
previous contents of RO are lost.
Note: On processors where this in-
struction is not implemented, a re-
served instruction trap through
vector 10, is taken.

Moves the source operand to the
destination location. The previous
contents of the destination are lost.
The source operand is not affect-
ed.

Byte: Same as MOV. The MOVB to
aregister (unique among byte in-
structions) extends the most signif-
icant bit of the low-order byte (sign
extension) into the high byte of the
selected register. Otherwise,
MOVB operates on bytes exactly
as MOV operates on words.

This instruction pops a word off the
current R6 stack determined by PS

185 uononisul — G 181deyd

Table 5-1 PDP-11 Instruction Set, continued

Mnemonic/
Instruction Type OPCode Operation Condition Codes Description
Previous V: cleared bits <15:14> and stores that word
Data space C: unatfected into an address in previous space
MTPI determined by PS bits <13:12>.
Move To The destination address is com- Q
Prewous puted using the current registers 3
Instruction = and memory map. =
space <|h
0
’é"_
3
g
MTPSB : MS 1064SS PS < (src) N: set ac'cording to The eight bits of the effective oper-
ove Byte effective src oper- and replace the current contents of
To PSW and 0-3 the PS <7:0>. The source operand
Z: same as above address is treated as a byte ad-
V: same as above dress. Note that PS bit 4 cannot be
C: same as above set with this instruction. The src
operand remains unchanged.
MUL DO 070RSS R,Rvi«<R X N: set if product <0 The contents of the destination
Multipy (src) Z: setif product =0 register and source taken as 2’s
V: cleared complement integers are multi- o
C: setiftheresultis plied and stored in the destination 5
less than —2'S or register and the succeeding regis- (‘.;,
greater than or ter (if Ris even). If R is odd, only >
equal to 2'%. Condi- the low-order product is stored. |
tion codes set on Assembler syntax is: MUL S,R. 5
32-bit result even if (Note that the actual destination is S
Ris odd. R, Rv1, which reduces to just R 2
when Ris odd.) S
(%}
NEG SO 0054DD (dst) < —(dst) N: setif result <0 Replaces the contents of the desti- 2
NEGB 1054DD Z: setifresult =0 nation address by its 2’s comple-
Negate V: setif result = M.N.I. ment. Note that 100000 is replaced
C: cleared ifresult = 0; by itself.
set otherwise
NOP CcC 000240 None N: unaffected No operation is performed.
No 000260 Z: unaffected
Operation V: unaffected

ctl

gLl

Table 5-1 PDP-11 Instruction Set, continued

Mnemonic/
Instruction Type OPCode Operation Condition Codes Description
C: unaffected
RESET MS 000005 N: unaffected Sends INIT on the UNIBUS for 10
Z: unaffected ms. All devices on the unit are re-
V: unaffected set to their state at power-up.
C: unaffected
ROL SO 0061DD (dst) < (dst) N: set if the high-order Rotates all bits of the destination
ROLB 1061DD rotate left one bit of the result word left one place. The high-order bit is
Rotate Left place is set (result < 0). loaded into the C bit of the status

RORB
Rotate
Right

RTI
Return
from
Interrupt

MS

0060DD
1060DD

000002

(dst) <« (dst)
rotate rightone
place

PC < (SP)+
PS + (SP)+

. setif all bits of the

result =0

: loaded with the ex-

clusive OR of the N
bit and C bit (as set
by the completion of
the rotate opera-
tion).

: set if the high-order

bit of the destination
was set prior to in-
struction execution.

word and the previous contents of
the C bit are loaded into the low-
order bit of the destination.

N:

set if high-order bit
of the result is set

. setif all bits of result

are0

: loaded with the ex-

clusive OR of the N
bit and the C bit as
set by ROR.

: setif the low-order

bit of the destination
was set prior to in-
struction execution.

: loaded from current

Ré6 stack

: loaded from current

R6 stack

: loaded from current

R6 stack

: loaded from current

R6 stack

Rotates all bits of the destination
right one place. The low-order bit
is loaded into the C bit and the
previous contents of the C bit are
loaded into the high-order bit of
the destination.

Used to exit from an interrupt or
trap service routine. The PC and
PS are restored (popped) from the
R6 stack. If the RTI sets the T bitin
the PS, a trace trap will occur prior
to executing the next instruction.
When executed in Supervisor
Mode, the current and previous

Table 5-1 PDP-11 Instruction Set, continued

Rl
Return
from
Interrupt

GHL

000006

Mnemonic/
Instruction Type OPCode Operation Condition Codes Description
mode bits in the restored PS can-
not be Kernel. When executed in
User mode, the current and previ-
ous mode bits in the restored PS
~ can only be User. RTI cannot clear
PS <11> if it was already set. When
= executed in user or supervisor mode,
N PS <7:5> are unaffected.
RTS PC 00020R PC <« (reg) N: unaffected Loads contents of register into PC
‘Return (reg) < (SP)+ Z: unaffected and pops the top element of the R6
from V: unaffected stack into the specified register.
Subroutine C: unaffected Return from a non-re-entrant sub-

routine is made through the same
register that was used in its call.
Thus, a subroutine called with a
JSR PC,dst exits with an RTS PC,
and a subroutine called with a JSR
R5,dst may pick up parameters
with addressing modes (R5)+,
X(R5), or @X(R5) and finally exit,
with an RTS R5.

loaded from current

R6 stack

Z: loaded from current
R6 stack

V: loaded from current
R6 stack

C: loaded from current

R6 stack

PC « (SP)+ N:
PS « (SP)+

This is the same as the RTl instruc-
tion (used to exit from an interrupt

or trap service routine), the PC and
PS are restored (popped) from the
processor stack; if the RTI sets the
T bitin the PS, a trace trap will oc-

cur prior to executing the next in-

struction) except that it inhibits a
trace trap, while RT| permits a

trace trap. If a trace trap is pend-
ing, the first instruction after the
RTT will be executed prior to the
next “T" trap. In the case of the RT!
instruction, the “T" trap will occur
immediately after the RTIl, When
executed in Supervisor Mode, the
current and previous mode bits in
the restored PS cannot be Kernel.
When executed in User Mode, the
current and previous mode bits in
the restored PS can only be User.

9kl

ZLE

Table 5-1 PDP-11 Instruction Set, continued

Mnemonic/
Instruction Type OPCode Operation Condition Codes Description
RTT cannot clear PS<11> if it was
already set. When executed in user or
supervisor mode, PS <7:5> are un-
affected.
SBC SO 0056DD (dst) < (dst) — C N: setifresult <0 Subtracts the contents of the C bit
SBCB 1056DD Z: setifresult =0 from the destination.
Subtract V: setif (dst) =M.N.I.
Carry C: setif (dst) was 0 and
C was 1 prior toin-
struction execution.
S CcC 000260 Set condition code bits. Selectable combinations of these bits may be set
Set PLUS 4- together. Condition code bits corresponding to bits in the condition code oper-
Selected bitmask ator (bits 0-3) are modified; sets the bit specified by bit 0, 1, 2, or 3. Bit4isa 1.
Condition Operation:
Codes PSW <3:0> « PSW <3:0> v mask <3:0>
SCC CcC 000277 N,Z,V,C <1
Setall
Condition
Codes
SEC CcC 000261 C<«1
SetC
SEN CC 000270 N <1
Set N
SEV CC 000262 V<1
SetV
SEZ CC 000264 Z<1
SetZ
SOB PQ 077R00 R<«R-1 N: unaffected The register is decremented. If itis

Table 5-1 PDP-11 Instruction Set, continued

Operation

Condition Codes

Description

8LI

if thisresult # 0 Z:
then PC < PC — V:
(2 X offset) C:

unaffected
unaffected
unaffected

: unaffected
: unaffected
: unaffected
: unaffected

not equal to 0, twice the offset is
subtracted from the PC (now point-
ing to the following word). The off-
set is interpreted as a 6-bit positive
number. This instruction provides
a fast, efficient method of loop con-
trol. Assembler syntax is:

SOBR,A
where A is the address to which
transfer is to be made if the decre-
mented R is not equal to 0. Note
that the SOB instruction cannot be
used to transfer control in the for-
ward direction.

The least significant three bits of
the instruction are loaded into the
program status word (PS), bits 7-5,
thus causing a changed priority.
The old priority is lost.

Assembler syntax is: SPL N

611

PS bits <7:5> <« N
priority (priority V4
= N) \"
C
(dst) < (dst) — N
(src) V4
{in detail (dst) < \"

(dst)+ ~ (src)+1

:setifresult <0
: setifresult=0
: setif thereis

arithmetic overflow
as a result of the op-
eration, i.e., if the
operands were of
opposite signs and
the sign of the
source is the same
as the sign of the
result.

: setif thereis abor-

row into the most
significant bit of the
result, i.e., if (dst) +
~ (src)+1 was less
than 218, ;

Subtracts the source operand from
the destination operand and leaves

the result at the destination ad-
dress. The original contents of the

destination are lost. The contents
of the source are not affected. In
double precision arithmetic, the C
bit, when set, indicates a borrow.

Table 5-1 PDP-11 Instruction Set, continued

Mnemonic/
Instruction Type OPCode Operation Condition Codes Description

SWAB SO 0003DD tmp <« (dst) N: set if high-order bit Exchanges high-order byte and
Swap Bytes <7:0> of low-order byte low-order byte of the destination
(dst) <7:0> <« (bit7) of resultis set word (destination must be a word
(dst) <15:8> Z: setif low-order byte address).

(dst) <15:8> < ~ ofresult =0 ’

Q
3
@
o
tmp V: cleared I\
C: cleared a
R
SO 0067DD (dst) < 0if N bit N: unaffected If the condition code bit N is set, %
is clear Z: setif N bit clear then a —1 is placed in the destina- 2)
(dst) < —1ifN V: cleared tion operand; if the N bit is clear,]
bit is set C: unaffected then a 0 is placed in the destination
operand. This instruction is partic-
ularly useful in multiple precision
arithmetic because it permits the
sign to be extended through multi-
ple words.
NEEEEE S ST
PC 104400 —(SP) < PS N: loaded from trap Operation codes from 104400 to
to —(SP) < PC vector 104777 are TRAP instructions.
104777 PC <« (34) Z: loaded from trap TRAPs and EMTs are identical in &
PS <« (36) vector operation, except that the trap vec- N
V: loaded from trap tor for TRAP is at address 34. E_
vector Note: Since DIGITAL software o
C: loaded from trap makes frequent use of EMT, the !
vector TRAP instruction is recommended 2
for general use. :E:
SO 0057DD tmp < (dst) N: setifresult <0 Sets the condition codes N and Z §'
1057DD Z: setifresult =0 according to the contents of the »
V: cleared destination address. o
C: cleared
TSTSET SO 0072DD (RO)<—(dst) N:setif RO< O Reads/Locks destination word and
Test Des- Z:setifRO=0 stores it in RO. Writes/Unlocks
tination V:clear (RO)v1 into destination. If mode is
and Set C:gets contents of bit 0, traps to 10.

Low Bit. 0

(44"

ech

Table 5-1 PDP-11 Instruction Set, continued

1aS uononnsu; — G Jaydeyn

Mnemonic/
Instruction Type OPCode Operation Condition Codes Description
WAIT MS 000001 N: unaffected Provides a way for the processeor to
Wait for Z: unaffected relinquish use of the bus while it
Interrupt V: unaffected waits for an external interrupt. Hav-
,C: unaffected ing been given a WAIT command,
the processor will not compete for
the bus by fetching instructions or
operands from memory. This per-
mits higher transfer rates between
device and memory, since no
processor-induced latencies will
be encountered by bus requests
from the device. In WAIT, as in all
instructions, the PC points to the
next instruction following the WAIT
operation. Thus, when an interrupt
causes the PC and PS to be
pushed onto the stack, the address
of the next instruction following the
WAIT is saved. The exit from the
interrupt routine (i.e., execution of
an RTlinstruction) will cause re-
sumption of the interrupted proc-
ess at the instruction following the
WAIT.
WRTLCK SO 0073DD (dst)«—(R0) N:setif RO < 0 Writes contents of RO into desti-
Read/Lock ZssetifRO =0 nation using bus lock. If mode is
Destination. V:clear 0, traps to 10.
Write/Un- C:unchanged
Lock RO
into des-
tination.
XOR DO 074RDD (dst) « R¥ (dst) N: setiftheresult <0 The exclusive OR of the register
Exclusive Z: setifresult =0 and destination operand is stored
OR V: cleared in the destination address. Con-
C: unaftected tents of register are unaffected.

Assembler format is XOR R,D.

18S uononnsu| — G 181deyd

